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剛体の運動を求めようというとき、特に剛体の角運動量を求めようというとき、剛体
の慣性モーメントは重要な役割を担います。そこで慣性モーメントをどのように計算し
たらよいのか、その方法を知っておくことが重要です。
どんな形の剛体の慣性モーメントでも計算できる!というのが理想ですが、せめて球・
円柱・立方体くらいは確実にできるようにしておきましょう。多重積分のやり方がポイ
ントです。

1 慣性モーメントをなぜ考えるのか
質点がたくさん集った系での全角運動量 ~L =

∑
~r × ~p の時間微分を考えてみると、

d

dt
~L = [外力のモーメントの和]

となる。このように内力がまったく表れないというのは、剛体のように質点の集合体を
まとめて記述しようという目的には好都合である。そこで、剛体の全角運動量を計算し
ようとしてみると、剛体の回転の角速度を ~ωと書いて、

~L =

∫
dv[ρ~r × (~ω × ~r)]

が成り立つ。さらに回転軸が z軸に固定されているとして、角運動量ベクトルの z成分
のみを考えてみると、(~ωの z成分を ωと書く)

Lz =

∫
dv[ρ(x2 + y2)] · ω

となる。このはじめの部分を「慣性モーメント」と呼び、Iと書く。

I =

∫
dv[ρ(x2 + y2)]

これが慣性モーメントを計算するための出発地点となる式。(ここの
∫

dvは剛体全体で
の積分。つまり 1変数の積分ではなく多重積分である)

慣性モーメントをあらかじめ計算しておけば、角運動量は Iωと簡単に求めることが
できて、さらに剛体の回転に関する式は

I
dω

dt
= Nz

と簡単なものになる (この式の右辺Nzと書いたのは、外力のモーメントの和の z成分と
いう意味)。この式を眺めると、回転にとっての慣性モーメントは、並進にとっての質量
に相当する役割を果たすことがわかるだろう。
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2 多重積分のやり方
1. 積分に用いる座標変数を決める。x, y, zにこだわらない方がよい。

2. それぞれの変数に対して、積分範囲を求める。

3. 微小体積 dvをその座標変数で書き表わす。

4. 被積分関数をその変数で書く。

5. 順序よく積分する。

多重積分では球座標や円柱座標を使いこなせるようになっておこう!

3 参考までに「平行軸の定理」
重心を含む直線を回転軸としたときの慣性モーメント IGが求められているとき、その
軸と平行に hだけ離れた軸を回転軸としたときの慣性モーメント Iは、

I = IG + Mh2

となる。ちなみにMとは剛体の全質量。つまり、重心を通る軸まわりのときに慣性モー
メントが最も小さくなる (=最も回転を変化させやすい)ということ。

上の式は、I =
∫

dv[ρ(x2 + y2)] の x, yに対して、変形していくと証明できる。
この x, yは回転軸を原点とした座標である。ここで重心の座標を (x, y) = (a, b)である
としよう。「回転軸が重心を含む軸から hだけ離れている」という条件から a2 + b2 = h2

ということはわかっている。さらに「重心を通る軸まわりの慣性モーメントが求められ
ている」ということは

∫
dv[ρ(x2

G + y2
G)]の計算はすでにやっていて、それを IGと書くと

いうこと。ここの xGとか yGは xG = x − a, yG = y − bである。
さらに、

∫
dv[ρ]は剛体の全質量M であるので……自分で計算できそうだと思えたら、

ちょっと計算してみよう!

自分で計算してみて「どうもこの項が消えないなぁ…」という項があったら、そもそ
も重心の座標をどのように求めていたかも思い出そう。~rG =

∫
dv[ρ~r]、つまり

a =

∫
dv[ρx] , b =

∫
dv[ρy]

である。このことを使うと、うまくできないだろうか??
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4 参考までに「任意の回転軸での慣性モーメント」
先に挙げた

~L =

∫
dv[ρ~r × (~ω × ~r)]

の式に、~ω =

ωx

ωy

ωz

 と ~r =

x

y

z

 を代入してみよ。それで、任意の回転軸の場合の角速
度と角運動量の関係が得られる。

ちなみにその答えは、
Lx =

∫
dv[ρ(y2 + z2)ωx − ρ(xy)ωy − ρ(xz)ωz]

Ly =

∫
dv[−ρ(yx)ωx + ρ(z2 + x2)ωy − ρ(yz)ωz]

Lz =

∫
dv[−ρ(zx)ωx − ρ(zy)ωy + ρ(x2 + y2)ωz]

である。そのため、

Ixx =

∫
dv[ρ(y2 + z2)]

Ixy = −
∫

dv[ρ(xy)]

Ixz = −
∫

dv[ρ(xz)]

...

という書き方を導入すれば、Lx

Ly

Lz

 =

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz


ωx

ωy

ωz


という表記ができて、剛体の回転を表わす方程式は

I
d~ω

dt
= ~N

のようになる。この式は Iが行列なので、見た目ほど単純に解けるわけではないけれど。

ちなみに対称な軸に対して回す場合。z軸で対称な物体で計算すると、Ixz, Iyzといっ
た値は 0になるので、z軸まわりの角運動量は単純に Lx = 0, Ly = 0, Lz = Izzωzと求め
ることができる。
対称な軸で回転していない場合は、たとえ z軸に沿って回転させても、x軸まわりや y

軸まわりの角運動量が現われる。

3


