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1 運動方程式
物理は「ものの動きを予測する」のが目的。そのために、物体の位置と時間と質量、そ
して力という概念を導入して、それらを数値で表し、その間に成り立つ関係式を仮定す
る。その関係式とは、Newtonの運動方程式:

m
d2~r

dt2
= ~F

である。これが全ての出発地点。この式は実験的にも、充分に正しいと信頼してよい。
あとは状況にうまくあわせて、そのとき働いている力を見抜き、上記の式の ~F のとこ
ろに代入すれば、運動を求めるための微分方程式ができあがる。

2 微分方程式の解法
手で解ける微分方程式はいろいろなパターンがある。そのなかで特に重要なものを 3

つ挙げておく。

2.1 変数分離法

dx

dt
= f(x)g(t)

という形に変形できるもの。この形は左辺に xだけの式を集め、右辺に tだけの式を集
めることで、両辺を積分することができる。
なお運動方程式は 2階の微分方程式なので、それを解く場合は v =

dx

dt
といった変数 v

を導入してみると、うまくいく場合が多い。考えている微分方程式を変数 vで書き直し
てみよう (そのとき変数 xという文字はもう式に残らないようにする)。ちなみに、運動
方程式に xの項があって、変数 vだけで書き表せない!という場合は、別の解法を試みる
とよい。(特に次の節のものが適用できないかを疑ってみること)

変数 vについて一般解を求められたら、dx

dt
= [vの一般解]という新しい微分方程式を

立てて、それを解く。
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2.2 線形2階常微分方程式

a
d2x

dt2
+ b

dx

dt
+ cx = 0

という形の解法も重要。a, b, cは定数とする。
この方程式を眺めてみると— xは tで微分しても、ほとんど形を変えないような関数
みたいだなぁ…それだとこの方程式を成立させることができそうだなぁ…と考える。そ
こで、xの形として、だいたい

x ∝ eωt

といったものが良さそうだと予想する。比例関係では代入しにくいので

x = Aeωt

として、元の方程式に代入してみる。Aは比例定数だけど、場合によってはあとで条件
がつくかもしれない…程度には考えておく (実際には条件はつかない)。ωは方程式が成
り立つように (辻褄が合うように)あとから条件付けをする。
実際に代入してみると、方程式を成り立たせるために

aω2 + bω + c = 0

という条件が出てくる。つまり、この 2次方程式を成り立たせるような ωの値を用意す
れば、x = Aeωtが方程式の解になる。Aには特に条件が出ないので、これを不定定数と
する。

2階の微分方程式の一般解には、不定定数が 2つ必要 (後述)。しかし、ここで上記の条
件式 (2次方程式)を満たす ωの値も 2つあるはずだから、それを ω1 , ω2とすると、

x = Aeω1t + Beω2t

という形で不定定数が 2つ、つまり一般解になる。
もしも ωの条件式が重解を持っている場合は、x = Aeω∗tに対して、次の定数変化法
を用いればよい。結果としては、x = Aeω∗t + Bteω∗tが一般解となる。

2.3 定数変化法
ちょっと複雑になった微分方程式を解くためには、この定数変化法を覚えておくと、応
用範囲が広くなる。
これは考えている微分方程式を成り立たせそうな“およそ”の解の形を求めて、不定
定数と考えていた部分を tに依存すると考え直して元の微分方程式に代入、辻褄が合う
ような条件を求める…という手法。

例えば、
dx

dt
= f(x)g(t) + h(t)
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といった形だと、h(t)が邪魔で、変数分離法は使えない。こういうときに、試しに h(t)

がない場合の微分方程式 dx

dt
= f(x)g(t)を解いて、その一般解の不定定数の部分を tに

依存する関数だと考え直して、上記の式に代入する。
もっと具体的な例を出すと、

dx

dt
= 2xt − 2t

という方程式。これを解いてみよう。まずは右辺の−2tがない方程式 dx

dt
= 2xtを解く。

すると、x = Aet2となる。ここのAは不定定数。
このAが実は定数でなく関数だった (“定数変化”法!)と考え直して、x = A(t)et2を微
分方程式に代入してみる。すると左辺は、

dx

dt
= A(t) · 2tet2 +

dA(t)

dt
et2

= 2tx +
dA(t)

dt
et2

なので、辻褄を合わせるためには、

dA(t)

dt
= −2te−t2

ならば良いことになる。これを解けばA(t)に対して、

A(t) = e−t2 + C

という一般解が得られる。ここのCが最終的な不定定数。元の微分方程式の一般解は、

x =(e−t2 + C)et2

=1 + Cet2

と求められる。(これの dx
dt
を計算して、ちゃんとそれが 2xt−2tになるか確認してみよう)

2.4 一般解と特殊解
n階の微分方程式を解くというのは、方程式の両辺を n回、不定積分するようなもの
である。そのため n階の微分方程式を解くと、n個の不定定数が現れる。不定定数が n

個含まれている解 (方程式を成り立たせる関数)を、一般解と呼ぶ1。
なにか条件を課して、一般解から不定定数の値を決めていき、すべての不定定数の値
が決った解を、「特殊解」と呼ぶ。物理学では、初期条件や境界条件などを考えて、最終
的には特殊解を求める。

1一般解の表し方は不定定数の選び方によっていくつもの可能性がある。だけど不定定数の選び方を調
整すれば、どの一般解も、必ず同じ形に変形できる。つまり不定定数の数さえしっかりしていれば「一般
解を求めた!」と言ってよい。
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2.5 例題1

次の微分方程式の一般解を求めよ。

(1) 　 dω

dt
= 0 ωは tの関数。

(2) 　 d2x

dt2
= −g xは tの関数。gは定数。

(3) 　 d2x

dt2
= −b

dx

dt
− g xは tの関数。b, gは定数。

(4) 　 d2x

dt2
= − k

m
x xは tの関数。k,mは定数。

(5) 　 d2θ

dt2
= −g

`
θ θは tの関数。g, `は定数。

3 エネルギー保存の法則
導出はNewton方程式の両辺に d~r

dt
を掛け算して、両辺を時間積分すれば良い。

力と ~F = −gradU という関係があるポテンシャルエネルギー U を用いて、

E =
1

2
m

(d~r

dt

)2
+ U

という値を力学的エネルギーと呼び、この値はいつ (どのタイミングで)測定したとして
も値は変化しない…という性質を持つ2。これはNewton方程式からの帰結である。
運動の特徴的な状態 (エネルギーを求めやすい状況)を抜き出して、エネルギーが変化
しないという条件式を作ると、便利な場合もある。

3.1 例題2

振り子の運動を考えてみる。振り子の糸の長さを `、質量をmとする。最下点から角
度を測ることにして、振らせはじめの角度を θmaxとする。またポテンシャルエネルギー
の基準も、振り子の最下点とする。

(1) 振らせはじめの時点での全エネルギーを求めよ。
(2) 任意の角度 θのときの全エネルギーを求めよ。ただしそのときの振り子の速
度を vとする。

(3) 振り子の速度 vを θの時間微分を用いて表現せよ。
(4) (1)(2)(3)で求めた内容から、θに対する微分方程式を立てよ。
(5) (4)で求めた微分方程式を使って、この振り子の周期を求めよ。

(復習といいつつ、この話題は前期にやってません。積分はすごく難しい!!)

2ちなみに ~F = −gradU という関係式で力を書き表せるとき、その力を「保存力」と呼び、そのような
力だけが働いているときには、力学的エネルギーは変化しない。だけどこの関係式で書き表せない力もあ
る (床の摩擦力など)。そういった力が働いているときは、力学的エネルギーは保存しない。
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A 例題の解答
A.1 例題1

答えのみ。

(1) ω = A Aは不定定数。

(2) x = −1

2
gt2 + At + B A,Bは不定定数。

(3) x = Ae−bt − g

b
t+B A,Bは不定定数。　求め方によってはAでなく−A′

b2

といった形になるかもしれない。けどA = −A′

b2
だと考えれば同じ形 !

(4) x = Aei
√

k
m

t + Be−i
√

k
m

t A,Bは不定定数。

(5) θ = Aei
√

g
`

t + Be−i
√

g
`

t A,Bは不定定数。

A.2 例題2

(1) 重力は保存力。ポテンシャルエネルギーは基準点から hだけ高いところで
mghという値になる。よって、E = mg`(1 − cos θmax)

(2) E =
1

2
mv2 + mg`(1 − cos θ)

(3) v = `
dθ

dt

(4)
(dθ

dt

)2

=
2g

`
(cos θ − cos θmax)

(5)
dθ

dt
=

√
2g

`
(cos θ − cos θmax)から、

dt

dθ
=

√
`

2g

1

(cos θ − cos θmax)
と変形し

て、両辺を積分してみよう。積分は振り子の最下点から最高点までとする。
つまりそれは全周期 T の 1

4
。∫ 1

4
T

0

dt =

∫ θmax

0

√
`

2g

1

(cos θ − cos θmax)
dθ

=⇒ T = 4

∫ θmax

0

√
`

2g

1

(cos θ − cos θmax)
dθ

ここまでできたら上出来。この積分は sin
(θ

2

)
= sin

(θmax

2

)
sin φとなる φへ変

数変換すると計算できる。(この積分を調べるなら「楕円積分」がキーワード)

計算結果は、 T = 2π

√
`

g

{ ∞∑
n=0

[(2n − 1)!!

(2n)!!

]2
sin2n θmax

2

}
となる。
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B あと復習としてやるべきことは…
どんなときに、どんな力が働くのかを知っておこう。

• 地表付近では鉛直下方向に重力がかかる。質量mの物体には重力加速度 gと
いう定数を用いて、重力の大きさはmg。

• 接している物体同士は、必ず力を及ぼし合う (“垂直抗力”)。

• 接している物体同士の力は、お互いに同じ大きさであり、向きが逆向きにな
る (“作用反作用の法則”)。

といったことは覚えておく必要がある。
技術的なことだが、位置 ~rをベクトルで (数式で)表すことにも慣れておこう。同じ基
底ベクトルを用いて、~F を表すようにする。

あとは問題に応じて考える。

• 弾性体の復元力は、つり合いの位置からの変化を xと表したとき、xが充分小さい
間は、xに比例した大きさになる。

• 空気抵抗は速さに依存する。あまり速くないときは、速さの 1乗に比例する大き
さ。力の向きは運動を妨げる方向。

といった状況は、手計算で解きやすい。復習するならば、

• 空気抵抗なしで落下する質点の動き

• 速さの 1乗に比例する空気抵抗を受けつつ、落下する質点の動き

• バネと連結している質点の動き

などを考えてみるとよいだろう (各自で問題設定をおいて、自分で解いてみよ!)。ちなみ
に最後の「バネと連結している質点の動き」に空気抵抗まで考えに入れると、面白い (=

つまり、ちょっと大変)。

C 後期 (物理学 IB)でやることで関連するのは…
後期は質点がたくさん集まった状態 (“質点系”)の説明を行う。(その特殊な場合とし
て、「剛体」に特化した話をする)

• 複数の質点があるとき、どんな条件で全運動量が保存するか。

• どんな条件で全角運動量が保存するか。

といったことは、剛体に限らず、質点の動きを考える上で大事になる内容なので、注意
しておいてください。
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