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Abstract

The idea of lattice is very powerfull to study the field theory in strong coupling region.

But there exists a problem in expressing a chiral fermion, as we known as doubling

problem or species doubler.

This problem is that there are other particles in lattice theory which never exist in

continuous theory. So if you make a lattice theory from some continuous theory by

discretization and then take a continuum limit, you’ll find fermi-particles doubled. This

means we cannot make a lattice version from continuous standard model (SU(3)×SU(2)×
U(1)) which treats right-handed and left-handed electrons separately. In the view point

of calculation in strong coupling region, lattice theory goes very well, but is no-go for

the purpose of expressing fermions. And, this problem has been proved to be unable to

be escaped from. (which we called as Nielsen-Ninomiya theorem or No-go theorem)

In this thesis the famous three methods are presented for expressing fermions and

overcoming that problem.

The first method in the three is called Wilson fermion, which was proposed by Wilson

who was the first propser of lattice field theory. In this method, doubling species are

never seen because a certain term like a mass term is introduced, which gives a mass to

doublers and is proportionate to lattice size. So this additive term is disappeared in a

continuous limit. But as this term is like a mass term, so not only doublers but chiral

symmetry has also gone.

The second method is called staggerd fermion or Kogut-Susskind fermion, suggested

by Kogut and Susskind, or others. This method is based on an idea of distributing

degrees of freedom. In a normal idea of lattice fermion, a spinor field is treated on a

site. In this idea of staggerd fermions, the field on a site is not a whole spinor but one

component of spinor fields. This makes the effective lattice spacing doubled, and species

doublers have never seen. On the other hand, to complete the idea of distribution, we

need another parameter which expresses “flavour”. So in the idea of staggerd fermions,

there are no doubler but are some differently flavoured fermions.

The last method is a relatively new approach to express chiral fermions. Some call

this method Lüscher fermion. This fermion also gives up chiral symmetry, but gets a

modified chiral symmetry, which is known as Lüscher symmetry or Ginsparg-Wilson

relation. Using this modified chiral symmetry, we can calculate an anomaly correctly

and easily. So some think this modified chiral symmetry is “exact” chiral symmetry on

the lattice.

The purpose of this thesis is to get a better sight on the lattice field theory through

the study of doubling problem. To achieve this purpose better, the author pays attention

to the problem which rises up if we make a supersymmetric theory on the lattice. A lot

of attempt to get supersymmetric theory on the lattice have been made. In this thesis,



only two methods are presented. One is based on the idea of staggerd fermion. The

other is a challenge to make a supersymmetric version of Ginsparg-Wilson relations.
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1 導入
1.1 格子理論とは
現在の物理学では、クォークやレプトンなどの素粒子は少なくとも低エネルギーにお

いて場の量子論に従って運動していると信じられている。そして場の量子論では経路積
分を用いた量子化を考えることが多い。その経路積分は場の関数を微分したり全空間で
積分したりという操作が含まれている。
微分や積分は「座標を離散的にとらえて、それの連続極限とったもの」だと考えるこ

とは自然なことである。例えば関数 f(x)を xで微分するときには

df

dx
= lim

a→0

f(x+ a)− f(x)

a

と考える。また積分ならば区分求積法で
∫
f(x)dx = lim

a→0

∑

n

afn

(
fn = f(x = an)

)

と考える。つまり関数の微分や積分を行うときには、特に意識していなくても離散化さ
れた空間が存在していて無意識のうちにそれを連続極限 (上の例では aを 0にする極限)

をとるという操作をしているのである。
このように空間を離散化して連続極限をとるという操作が問題を引き起こすことはな

いと普通は考えている。しかし理論を一旦離散化するという操作がなにか悪いことをし
ていないか疑ってみることも必要なことだろう。
格子理論というのは、そのように空間を離散化した状態—–つまり上の例でいうとa→ 0

の極限を取る前の段階—–での理論を考えることである。微分には差分、積分には和を対
応させて理論を書き表し、最後にそれの連続極限をとる。
連続極限をとったときに普段考えている理論と同じ形になるように、格子理論は構成

されている。場の強度 (field strength)の格子理論における対応物など、いくつか工夫を
加えて、スカラー場の格子理論を作ってみると、連続理論と比較して特に問題が発生す
ることはない。それどころか強結合展開などの手法を使って、相互作用が強いときの理
論計算が可能になるという利点もある。
また場の量子論には計算した物理量が発散するという固有の問題がある。これは空間

の 2点が限りなく近くに近づけることに起因するものであり、格子理論ではこの種類の
発散を心配する必要はない。つまり格子理論には紫外発散に対する正則化の手段として
の魅力もある。
さてスカラー場では特に問題なく格子上の理論展開ができ、強結合の解析ができ、紫

外発散も現れないといいことずくめのように見える格子理論だが、視点をフェルミ場に
向けると状況は変わってくる。フェルミオンを格子で表そうとすると、元々の連続理論
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にはなかったはずの粒子まで理論の中に現れてしまうのである。4次元の時はその数 16

個にも及び、無視できない状況になる。これが「フェルミオンのダブラー問題」と呼ば
れるもので、この論文の主題でもある。
格子理論は、微分に差分を対応させて連続極限をとる前の段階を調べることだと指摘

したが、微分を差分に置き換えるには何通りか考えられる。例えば上で書いたように、
df

dx
= lim

a→0

f(x+ a)− f(x)

a

と考え、f(x+a)−f(x)
a

を微分の対応物と考えることは自然である。しかし微分を

df

dx
= lim

a→0

f(x)− f(x− a)

a

と見なすことも可能であり、微分の対応物として f(x)−f(x−a)
a

を主張しても不思議はない。
さらには、

df

dx
= lim

a→0

f(x+ a)− f(x− a)

2a

という考え方もあろう。これらは連続理論ではどれも同じものだが、格子理論では違っ
たものである。そしてこういった違いがダブラーと呼ばれる余分な粒子の存在に深く関
わっている。
このダブラーというものは、いくつかの仮定の下でフェルミオンを格子に乗せようと

すると、必ず発生してしまうものだということがすでにわかっている。
ダブラーと呼ばれる余分な粒子の存在を受け入れて理論を構成し直すということもひ

とつの選択肢ではあるだろう。しかし少なくとも、標準模型を信じ、それを格子上の理
論に書き直して連続極限をとるという操作をしようと思えば、このダブラーは何とかし
て回避しなくてはならない。なぜならば、標準模型には特定のカイラリティのみを持つ
フェルミ場が登場し、主要な役割を果たしているからである。例えば標準模型には右巻
きのニュートリノは含まれていない。しかしダブラーを受け入れると、左巻きニュート
リノに対応する右巻きニュートリノの存在を受け入れなければならなくなる。
フェルミオン、特にカイラルフェルミオンを格子上で自然に書き表そうとする試みは

いくつもなされてきた。この論文では、そのなかでも特に重要であると思う 3つの方法
をレビューする。一つ目はWilson fermionと呼ばれる方法で、これは格子理論を素粒子
に持ち込んだWilsonが提案したやり方である。計算が容易で、計算機を用いた数値解析
ではいまだに一番使われ続けている手法である。
二つ目はKogut-Susskind fermionもしくは staggerd fermionと呼ばれる方法で、これ

はスピノール場の成分を都合がいいように格子空間に配置させてしまう。連続極限をと
るとフェルミオンの理論が再現でき、余分な粒子が現れるということはないが、何種類
かのフェルミオンを同時に記述する必要がある。そのことを欠点とみるか利点とみるか
は人それぞれだろう。
そして三つ目は Lüscher fermionと呼ばれる方法で、近年特に注目を浴びているもの

である。連続理論のカイラル対称性と相性が良く、標準模型を格子上の理論で表すため
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の有力な手法だと考えられている。

格子理論のように考えなくとも (例えば繰り込みを用いた摂動論などでも)場の理論は
十分魅力的である。そして場の量子論にはもはや問題はないと信じて先に進むことも選
択肢のひとつであろう。しかし場の量子論では、だいたいの場合において一旦格子化し
て連続極限をとるという操作を (頭の中では)行っているはずである。その操作に問題は
ないか、その操作によって発生する困難はどのように回避できるのかについて、ゆっく
り考えてみることも有意義であろう。
空間を離散化し、連続極限をとる前の段階で理論を構成すると、連続極限の理論にはな

かった補正項が現れる。連続極限をとれば消えてしまうような項だが、それらにもひょっ
としたら、もっと深い意味があるのかもしれない。そのような疑いを持つことから空間
の構造について新しい知見が得られる可能性もないとは言い切れないだろう。

1.2 歴史といくつかの主要論文について
格子理論は 1974年、Wilsonによって導入された手法である (文献 [1])。これは格子理

論によってクォークの閉じこめを記述しようとした試みである。この論文が初めて格子
の考え方を素粒子理論に持ち込んだものである。ゲージ不変性を保った正則化として導
入されているが、フェルミオンについての深い考察はなされていない。

Wilson自身、フェルミオンを単純に格子に乗せたときに余分な粒子が現れてしまうと
いうことは早くに気付いていたようで、文献 [1]では触れられていないものの、文献 [2][3]

といった書籍では、当論文 4節 33ページ以降で紹介するような手法を提案している。こ
の論文ではこの手法をWilson fermionと呼んでいる。
格子理論は離散的な数を扱っているために、計算機で解析しやすいという利点もある。

Wilsonの考え方を初めて計算機に乗せ、モンテカルロシミュレーションを行ったのは
Creutzで 1980年のことだった (文献 [4])。ただしこれはフェルミオンについては考えな
い pure gaugeでの解析である。フェルミオンも考えに入れた数値計算は文献 [5]以降に
なる。

Wilson fermion以外のダブラー回避法として早くに登場したのは、現在Kogut-Susskind

fermionもしくは staggerd fermionと呼ばれる方法である。これはHamilton形式の格子
理論 (文献 [6])に基礎をおき、1977年に文献 [7]で提案された。当論文では 5節 36ページ
から扱う。SusskindはHamilton形式で議論したがそれはLagrange形式でも同じように
扱うことができ、その連続極限がDirac-Kähler fermionと同等であることを示した論文
が文献 [8]や文献 [9]である。Dirac-Kähler fermionというのは連続理論のフェルミオンで
あり、微分形式を用いたフェルミオンの表式である (参考として文献 [10]を挙げておく)。
文献 [7]では新たに導入されたフェルミオンの種類を具体的なフェルミオンのフレー

バーであると解釈している。しかしそれでは 4次元において 4種類のフレーバーが必要に
なってしまう。staggerd fermion (およびDirac-Kähler fermion)に現れる余分なスピノー
ルの足をどう解釈するかにはまだ議論の余地がある。
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近年、この足を超対称性のR対称性の足であると見なしてはどうかという提案もなさ
れている (文献 [11])。この理論ではゲージ固定に伴ってフェルミオンが生成される機構
になっていて面白い。(ただし文献 [11]はDirac-Kähler fermionについての議論であり、
staggerd fermionについてではない)

さてWilsonや Susskindらのやり方では、カイラル対称性を犠牲もしくはカイラル対
称性を拡張する方法で、ダブラーを現れなくしている。ダブラーの回避とカイラル対称
性を両立する理論にはなっていない。そしてダブラー回避とカイラル対称性は同時には
決して実現できないのだということが 1981年、Nielsenや Ninomiyaらによって証明さ
れた。Nielsen-Ninomiya定理もしくは no-go定理として知られている (文献 [12][13][14])。
この定理は 3 節で扱う。

Nielsen-Ninomiya定理は次の 3つの条件を満たす理論を考える場合、ダブラーの存在
は避けられないという定理である。その条件というのは (1)相互作用が局所的 (2)格子が
並進変換の下で不変 (3)ハミルトニアンがエルミートという 3条件である。これらの条
件を満たした格子理論を構成すると、カイラリティは最低でも 2つ現れる、つまりカイ
ラルフェルミオンは格子理論で定式化できないという主張である。

Wilsonや Susskindらのやり方は上記 3条件を大事にし、カイラル対称性を犠牲にして
いる。それに対して「相互作用の局所性」を犠牲にするという考え方もある。当論文で
は特に扱っていないが文献 [15]に代表されるやり方である。

NilsenとNinomiyaらは (上記の)もっともらしい前提を課した上で格子理論を構成す
る場合について議論した。それに対してGinspargとWilsonらは先に連続理論でカイラ
ル対称性を持つ理論を考え、それとブロックスピン変換で移り変われる格子理論に対す
る条件を求めようとした。1982年の文献 [16]である。これは現在、Ginsparg-Wilson関
係式と呼ばれている。
このGinsparg-Wilson関係式を満たすDirac演算子はなかなか見つからなかったが、関

係式のなかでも一番単純な形を満たす解が1998年に発見された。その解はNeubergerに
よって提案されたDirac演算子であって (文献 [17][18])、さらに元々は 1992年のKaplan

の指摘 (文献 [19])に始まる流れである。このKaplanらの流れは、4次元とは別にさらに
1つの空間的な余次元を導入し、余次元方向にステップ関数の形をした質量項を導入し
て右巻きと左巻きのフェルミオンを分けて存在させるという考え方である。そういった
余次元を用いた考え方とブロックスピン変換に基づく考え方が関係づけられているとい
うのは興味深いことといえる。
そしてそれを受けてLüscherは文献 [20]で、一番単純なGinsparg-Wilson関係式を満

たすDirac演算子の特徴を指摘し、その関係式が格子上におけるカイラル対称性 (に対応
するもの)であることを主張した。続く論文、文献 [21][22]ではその対称性を利用して、
U(1)理論を格子上で書き表すことを試み、それは成功を収めた。同様の手法で標準模型
を格子上で書き表そうという試みも続けられていて、文献 [23][24][25]などがある。ただ
し積分測度がゲージ場に依存するという困難のため、完成されてはいない。

Lüscherから始まる手法を当論文ではLüscher fermionと呼び、6節 53ページ以降で触
れる。
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格子を用いた超対称性についてもいくつかコメントをしておく。
超対称性を格子で書き表そうとする試みは文献 [26]に始まる。ただしこれは微分を単

純に差分に置き換えることしかしていない。格子を用いた超対称性の研究はまだ本筋と
いえる流れはできておらず、初期の研究では他に文献 [27][28][29][30][31]などがある。ま
とめたものとして文献 [32]も挙げておく。

Lüscherや Neubergerらの発見を受けて、超対称性に応用して有用な解を得ようとい
う試みもあり、文献 [33][34][35]などがある。超対称性に対するGinsparg-Wilson方程式
は文献 [36][37]で挑戦されている。
最近 (2002年)では格子の考えを用いた超対称性の構成として、staggerd fermion と似

たように場の自由度を格子点に分配して対称性を表現しようとする流れも注目を集めて
いる。ひとつは文献 [38]に始まる流れで、その続きの研究が文献 [39][40][41]となされて
いる。もう一つの流れとして文献 [42]に始まるものもあり、続いて文献 [43]もあり、こ
れらの今後の発展には注目したい。
最近の流れを含まない格子理論については教科書もあり、数値計算についても触れら

れているものとして、文献 [44]を挙げておく。他には文献 [45]といったレビューも参考
になるだろう。最近の成果について触れている教科書はなく、原論文にあたるしかない。
この論文がその一助になれば幸いである。
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2 ダブラーの問題
格子上でフェルミオンを考える際に「ダブラー問題 (doubler problem)」と呼ばれる問

題は避けて通れない。これは単純にフェルミオンを格子上に乗せると、連続の理論では
現われないはずの余分な粒子 (doubler)が出てきてしまうという問題である。
まずは単純にフェルミオンを格子上に乗せてみて、どのような問題が出るのかを確認

してみよう。その後、スカラー場の場合などと比較し、微分から差分への置き換え方に
ついて考えてみる。

2.1 格子上のフェルミオン
連続の理論でのフェルミオンの作用は

SF =

∫
d4xψ̄(x)(iγµ∂µ −M)ψ(x) (1)

である。
これを単純に格子上に乗せてみると、偏微分を差分演算子に置き換えて、

SF = a4
∑

x

ψ̄(x)(iγµ∂∗µ −M)ψ(x) , (2)

∂∗µ =
1

2
(4µ +4∗µ) (3)

となるだろう。ここで aは格子サイズ、4µは前方の差分演算子、4∗µは後方の差分演算
子である1とし、以下、特に断らない限りこれと同じ記号を用いることにする。なお (3)

式の妥当性については 2.3節で議論することにし、ここでは計算を続けることにする。
伝播関数を計算すると、その被積分関数の特異点から粒子の存在が判断できる。そこ

でここからはフェルミオンの伝播関数:

〈
ψ(x)ψ̄(y)

〉

がどのように計算できるかを確認していく。
格子理論で考える前に、同じ計算が連続の理論でどうだったかを先にみておくと、

〈
ψ(x)ψ̄(y)

〉
=

∫
DψDψ̄ exp[i

∫
d4x′ψ̄(x′)(iγµ∂µ −M)ψ(x′)]ψ(x)ψ̄(y)∫

DψDψ̄ exp[i
∫
d4x′ψ̄(x′)(iγµ∂µ −M)ψ(x′)]

(4)

1µ方向の単位ベクトルを µ̂と表記すると、

4µF (x) =
1

a
{F (x+ aµ̂)− F (x)}

4∗µF (x) =
1

a
{F (x)− F (x− aµ̂)}

である。
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であり (この式ではmetric=(+ − −−))、ここからWick回転 (x0 → xE0 , ixi → xEi )をす
ると

〈
ψ(x)ψ̄(y)

〉
=

∫
DψDψ̄ exp[−

∫
d4xψ̄(x)(γµ∂µ −M)ψ(x)]ψ(x)ψ̄(y)∫

DψDψ̄ exp[−
∫
d4xψ̄(x)(γµ∂µ −M)ψ(x)]

(5)

この式は作用を
SF =

∫
d4xd4yψ̄(y)K(x, y)ψ(x) (6)

とするK(x, y)を導入して、
〈
ψ(x)ψ̄(y)

〉
= K−1(x, y) (7)

となる。
K(x, y)をちゃんと書くと、

K(x, y) = (γµ∂µ −M)δ(x− y)

= (γµ∂µ −M)

∫
d4p

(2π)4
eip(x−y)

=

∫
d4p

(2π)4
(iγµpµ −M)eip(x−y) (8)

結果として
〈
ψ(x)ψ̄(y)

〉
=

∫
d4p

(2π)4

−iγµpµ −M
p2 +M2

eip(x−y) (9)

を得る。(4)式から (9)式までは連続理論の場合である。
格子上の理論でも (2)式を用いて同様に計算すると、連続の場合と同様に、

SF = a4
∑

x,y

ψ̄(y)K(x, y)ψ(x) (10)

とするK(x, y)を用いて 〈
ψ(x)ψ̄(y)

〉
= K−1(x, y) (11)

となる。
ここでK(x, y)を計算するのだが、(2)式と (3)式 :

SF = a4
∑

x

ψ̄(x)(γµ∂∗µ −M)ψ(x) , (2)

∂∗µ =
1

2
(4µ +4∗µ) (3)

から、
K(x, y) =

1

2
γµ(δy x−aµ̂ − δy x+aµ̂)−Mδy x (12)

である。ここで δy xはデルタ関数、aは格子サイズ、µ̂ は µ方向の単位ベクトルとして
いる。
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デルタ関数のフーリエ変換は

δxy =

∫ π/a

−π/a

d4p

(2π)4
eip(x−y) (13)

となる。この式の積分範囲が−π/a ∼ π/aであることは、空間を格子に区切った場合の
運動量空間がどのようになるかを考えれば理解できる。それを確認してみると次のよう
になる。なお格子の並進不変性は前提とする。
格子上で定義された関数としてF (x)と表記すると、そのフーリエ変換を F̃ (p)として

F̃ (p) =
∑

x

F (x)eipx

となる。ここの
∑
は各サイトの足し算である。つまり格子サイズをaとしてx = 0,±a,±2a,±3a, ...

というように足している。ここで格子の並進不変性 (or等方性)に注意すると、

F̃ (p+ µ̂π/a) =
∑

x

F (x)ei(p+π
a
µ̂)x

=
∑

~n

F (x)ei(p+π
a
µ̂)~na ~n = (n1, n2, n3, n4) : integer

=
∑

~n

F (x)ei(p~na+nµπ)

=
∑

~n

F (x)ei(p~na−nµπ)

=
∑

x

F (x)ei(p−
π
a
µ̂)x = F̃ (p− µ̂π/a)

となり、格子上で定義された関数のフーリエ成分は周期2π/aを持っている。そこでその
運動量空間の範囲として、

−π
a
≤ pµ ≤

π

a
(14)

を選ぶことは不自然なことではないであろう。(なおこのことからわかる通り、格子理論
における運動量空間は S1×S1×S1×S1 という 4次元トーラスになっている)

それでは行っていた計算を完成させよう。 (13) 式を用いてK(x, y)に代入し、伝播関
数を求めると、

〈
ψ(x)ψ̄(y)

〉
=

∫ π/a

−π/a

d4p

(2π)4

iγµp̃µ −M
p̃2 +M2

eip(x−y) , (15)

p̃µ =
1

a
sin apµ (16)

の結果を得る。
この (16)式が余分な粒子 (doubler)の存在を示している。伝播関数の極の位置が粒子

であると考えられるので、(16) 式の分母に注目する。簡単のために質量 0の粒子を格子
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に乗せることにして p̃ = 0となる点を探すことにすると、p = 0の他に p = ±π/aという
点も (余分な)粒子を表しているのがわかるだろう。これがダブラーである。
次の図 1は (16)式を図示したものである。

PSfrag replacements

π/a−π/a
pµ

p̃µ

p̃µ = sin apµ

doubler

図 1: 余分な粒子の存在

2.2 スカラー場の場合
スカラー場でも (15)式と同じ状況になるのではないかと思うかもしれない。しかしス

カラー場の場合はうまくダブラーを回避することができる。
スカラー場の連続理論での作用は、

SB =
1

2

∫
d4xφ(x)(−∂µ∂µ +M2)φ(x) (17)

であり、そこから伝播関数を計算すると、

〈
φ(x)φ(y)

〉
=

∫
d4p

(2π)4

1

p2 +M2
eip(x−y) (18)

となる。
格子上の理論に置き換える際は

SB =
1

2
a4
∑

x

φ(x)(−4∗µ4µ +M2)φ(x) (19)

とすればよい。ここで4∗µ,4µの定義は先と同じである (7ページ参照)。
ここからでる伝播関数は

SB =
1

2
a4
∑

x,y

φ(y)K(y, x)φ(x) (20)

K(y, x) = −δy x−µ̂ + 2δy x − δy x+µ̂ + δyxM
2 (21)
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から計算して、
〈
φ(x)φ(y)

〉
=

∫ π/a

−π/a

d4p

(2π)4

1
˜̃p2 +M2

eip(x−y) (22)

˜̃pµ =
2

a
sin

a

2
pµ (23)

となり、特に余分な粒子、ダブラー (doubler)は現われない。
図 1と同じような図を描いてみると、図 2のようになる。

PSfrag replacements

π/a−π/a
pµ

˜̃pµ

˜̃pµ = sin a
2
pµ

図 2: スカラー場の場合

スカラー場に対してダブラーが現われないのは、微分 ∂µ∂µを差分4∗µ4µ に置き換えて
いることにトリックがある。仮にフェルミオンの作用を格子化したときの置き換え方:(3)

式にならって、
∂µ∂µ −→

1

4
(4µ +4∗µ)(4µ +4∗µ) (24)

としたならば、伝播関数に現われる ˜̃pµは

˜̃pµ =
1

a
sin apµ (25)

となり、ダブラーが発生する。スカラーの場合でもダブラーは現われうるのである。こ
のことが特に重要になるのは超対称性の場合で、このときはスカラー場の運動項を (24)

式のように選ばなければいけなく、結果としてフェルミオンだけでなくスカラー場にも
ダブラーが現われることになる。

しかし何も積極的に都合の悪い置き換えを選ぶ理由はない。超対称性を考えない場合
は大抵、∂µ∂µ →4∗µ4µ の置き換えを行って済ましている。

2.3 Dirac演算子のエルミート性
ではフェルミオンでも微分から差分への置き換え方 (3): ∂∗µ = 1

2
(4µ +4∗µ)に問題が

あったのではないか、と考えるのも自然なことだろう。
仮に

∂µ −→ ∂∗µ = 4µ (26)
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という置き換えをしたら、いいのではないか?

実はこの項だけを考えると、確かにダブラーは出てこない。しかし、フェルミオンの
作用にはこの項にエルミート共役なものも加えられなければならない。(26)式の項のエ
ルミート共役を考えると

[∑
ψ̄γµ4µψ

]
H.C.

=
∑

(−(4µψ̄)γµψ)

=
∑

ψ̄γµ4∗µψ (27)

結局は元の (26)式に戻ってしまうのである。つまり作用にエルミート性を要求する限
り、フェルミオンのダブラーは回避できない問題なのである。

2.4 やや直感的な議論
スカラー場とフェルミオンでは何が違ってダブラー発生の有無が異なっているのか。

それぞれの作用の運動項の違いを比べてみよう。まずフェルミオンの運動項はおよそ
(4∗µ +4µ)という形をしている。これを具体的に関数 f(x)に作用させてみると、

(4∗µ +4µ)f(x) = f(x+ aµ̂)− f(x− aµ̂) (28)

これに対してスカラー場の運動項は4∗µ4µという形であり、

(4∗µ4µ)f(x) = f(x+ aµ̂)− 2f(x) + f(x− aµ̂)

=
{
f(x+ aµ̂)− f(x)

}
+
{
f(x− aµ̂)− f(x)

} (29)

となっている。これをみてわかることは、スカラー場では隣り合う格子間で差をとって
いるのに対して、フェルミオンではその 2倍の間隔の格子点での差をとっているという
ことである。このことがダブラー発生有無に関わっている。
f(x)をフーリエ変換して運動量空間での関数に書き換えてみよう。すると、

f(x+ aµ̂)− f(x− aµ̂) =

∫
dp
[
f̂(p)(e−ip(x+aµ̂) − e−ip(x−aµ̂))

]

=

∫
dp
[
f̂(p)e−ipx(e−iapµ − eiapµ)

]

=

∫
dp
[
f̂(p)e−ipx(−2i sin apµ)

]

∝ sin apµ

(30)

f(x+ aµ̂)− f(x) =

∫
dp
[
f̂(p)(e−ip(x+aµ̂) − e−ipx)

]

=

∫
dp
[
f̂(p)e−ipxe−iapµ/2(e−iapµ/2 − eiapµ/2)

]

=

∫
dp
[
f̂(p)e−ipxe−iapµ/2(−2i sin apµ/2)

]

∝ sin apµ/2

(31)
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となっている。
スカラー場の運動項は (29)式より 2つの隣接格子間で差をとっているが、それらはど

ちらも (31) 式のように sin apµ/2に比例する。つまりフェルミオンの運動項に相当する
(28)式は (30)式より sin apµに比例し、スカラー場の運動項に相当する (29)式は sin apµ/2

に比例することがわかる。
関数が sin apµに比例していれば−π/a ∼ +π/aの範囲で 2ヵ所の零点を持ち、sin apµ/2

ならば零点が 1つになるのは明らかなことである。つまりフェルミオンでは隣接格子点
でなく、2つ飛びの格子点と差を取るように運動項が作られていることがダブラーを生
じさせている。しかし隣接格子点で差を取ろうとすると、前小節で見た通り作用のエル
ミート性の要求を満たすことができないのである。
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3 Nielsen-Ninomiyaの定理 (No-go定理)

前節で見たとおり格子理論でフェルミオンを表現するにはダブラーと呼ばれる困難が
つきまとう。このことは格子理論が考えられるようになってからすぐに知られていた。
格子理論を提案したWilsonは単純なやり方でフェルミオンを格子に乗せることには問題
があることを指摘し、4節でみるような独自のやり方を提案していた。また他にも文献
[15]や文献 [7]といった論文など、この困難を解決しようという試みはいろいろとなされ
ている。とはいえ、カイラルフェルミオンを格子理論で表すことは、必ずしも成功して
はいなかった。
そしてこの困難はある意味克服できないものだということが、1981年 Nielsenや Ni-

nomiyaによって証明されたのである (文献 [12][13][14]の論文)。これはNielsen-Ninomiya

定理もしくは no-go定理として知られている。
この定理は、ハミルトニアンに 3つの “もっともらしい”仮定を課した上で、その仮定

が成立するかぎり、格子上で右巻きと左巻きを別々に扱うWeyl fermion を表現すること
はできないことを示したものである。

Weyl fermionは標準模型に現われる。標準模型 SU(3)× SU(2)×U(1)では右巻きの電
子と左巻きの電子を別々に扱っているが、Nielsen-Ninomiya定理はこれが達成できない
ことを意味している。

Nielsen-Ninomiya定理をもう少し詳しく表現すると、「ハミルトニアンが次の仮定 (先
に “もっともらしい”仮定と書いたもの)を満たす場合、右巻き粒子と左巻き粒子は必ず
組になって現われる」というものである。
そしてその “もっともらしい”仮定というのは以下の 3つである。

(i) 相互作用の局所性 (locality)

(ii) 格子の並進不変性
(iii) ハミルトニアンのエルミート性

(i)はハミルトニアンH(x−y)が |x−y| → largeに対して十分早く 0に近づき、H(x)

のフーリエ変換が 1階微分で連続であるということを要請している。

3.1 証明の概要

前提
証明はKogut-Susskind格子で行う2。なお、ここでの証明は文献 [12]による方法で、ホ

モトピー論を利用したものである。
2Kogut-Susskind格子とは、空間を格子状、時間は連続に保つ考え方である (文献 [6])。この 3節で行

う証明を時間も離散的に捉えるWilson格子に拡張することは難しくない。時間を離散的に捉えたとして
も、単位時間あたりの推進演算子 e−H からハミルトニアンに対応するH を見つければよい。
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考える理論は作用が

S = −i
∫
dt
∑

x

˙̄ψ(x)ψ(x)−
∫
dt
∑

x,y

ψ̄(x)H(x− y)ψ(y) (32)

となっているものである。一般的なものとして考えるために、ψ(x)は複素N 成分の場
であるとする。
Hに対する条件は先に述べた通り、

(i) 相互作用の局所性 (locality)

(ii) 格子の並進不変性

(iii) ハミルトニアンのエルミート性

である。

証明の方針としては、固有値方程式

H(p)
∣∣ωi(p)

〉
= ωi(p)

∣∣ωi(p)
〉
, (i = 1, ..., N) (33)

に注目して、粒子の数を勘定する。
この方程式には次の条件を課す:

(i) ωi(p)が縮退していない pの値に対しては次の不等式が成立すること。

ω1(p) > ω2(p) > · · · > ωN(p)

(ii) 離散的ないくつかの値pで 2つのエネルギーレベルは縮退している。そのpの値を
今後 pdegと呼ぶ:

ωi(pdeg) = ωi+1(pdeg)

(iii) ωi(p) = 0は縮退点 pdegで達成される

(ii)では 2つのエネルギーレベルが縮退するとしているが、3つやそれ以上のエネル
ギーレベルが縮退することは一般的にはありえない。
もし 3つのエネルギーレベルが縮退していたとすると、ハミルトニアンの 3 × 3行列

の部分は、

H(3)(p) =

8∑

i=1

c
(3)
i (p)λi + d(3)(p)1
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と表される (λiはGell-Mannの SU(3) 行列)が、p = pdegで縮退するために c
(3)
i (pdeg) = 0

とならなければならない。しかしこれは、3つの変数を定めるために 8つの条件式が現
われているわけで、これは条件が多すぎなのである。
それに対して 2つのエネルギーレベルが縮退しているとすると、ハミルトニアンの 2×2

行列の部分は、

H(2)(p) =
3∑

i=1

c
(2)
i (p)σi + d(2)(p)1

となり、p = pdegで縮退するための条件式 c
(2)
i (pdeg) = 0はちょうど 3つになっている。

(i)(ii)の条件はWeyl fermionを記述しようとする理論ならば、Weyl equationと同じ
縮退をもつ粒子で低エネルギーの物理が記述されているはずで、そのために課している
条件である。とどのつまりWeyl spinorは成分が 2個であることを反映している。これ
は考える理論の前提条件といえる。
それに対して (iii)は必ずしも必要な条件とは言えないが、安定した真空を達成するた

めに課しておく。

こういった考えでWeyl fermionがどのように表現できているか確認しておく。N成分
の ψを考えているが縮退点付近に注目する限り、大事なのは ψiと ψi+1の線型結合であ
る。そこでその 2成分に注目することにして、pdeg付近の固有値方程式は、

H(p) ui(p) = ωi(p) ui(p) (34)

H(p) ui+1(p) = ωi+1(p) ui+1(p) (35)

となる。これを

u =

(
ui

ui+1

)

とまとめて書くことにして、

H(2)(p) u(p) = ω(p) u(p) (36)

ここでこのH(2)を pdegの周りでテイラー展開すると、

H(2)(p) = ωdeg(pdeg) + (p− pdeg)kσαV k
α + (p− pdeg)a+O

(
(p− pdeg)2

)
(37)

となる。ここで a,V k
α は縮退点に依存する定数である。このテイラー展開で先の固有値

方程式 (36)式は、

(p− pdeg)kσαV k
α u(p) = {ω(p)− ωdeg(pdeg)− (p− pdeg)a}u(p) (38)

と変形できる。ここで実質的な運動量として

ωpr = ω(p)− ωdeg(pdeg)
ppr = p− pdeg

(39)
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を導入する。新しい座標系として

P0 = ωpr − ppra

Pα = (ppr)kV
k
α

(40)

を考えると、先の方程式は
σP u(p) = P0 u(p) (41)

となっている。つまりそれぞれの縮退点で 1種類のWeyl fermionが表現されているので
ある。
このu(p)のスピンについて考えておくと、(41)式は生成子 (generater)がJ = r×P+1

2
σ

である回転の下で不変になっているので、u(p)のスピンは 1
2
σといえる。P0 > 0の状態

ならばσP > 0となるので、(P0,P )座標で+1のヘリシティーを持っていることになる。

(P0,P )と (ωpr,ppr)の座標系の間の関係を確認しておく。座標系 (ωpr,ppr)は右手系に
定めることにし、P の基底ベクトルを (e1, e2, e3) とする。すると

e1 → (e1)pr = V −1




1

0

0




e2 → (e2)pr = V −1




0

1

0




e3 → (e3)pr = V −1




0

0

1




であるから、これで P 座標系が右手系か左手系かがわかる。

e3 · (e1 × e2) = det ((e1)pr, (e2)pr, (e3)pr)

= det
(
V −1

)
(42)

より、detV の符号で P 座標系の向きがわかるのである。

方針
特定の iに対する固有値方程式:

H(p)
∣∣ωi(p)

〉
= ωi(p)

∣∣ωi(p)
〉
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は ωi(p) = ωi+1(p) or ωi(p) = ωi−i(p) である pを除いたあらゆる pの値に対してN 次
元複素空間上の直線を決定する。つまりpは複素射影空間CPN−1での点を決定する3 の
である。
証明の考え方は次の通り:

(i) それぞれの縮退点の付近で、無限小の球面S2を描き、
∣∣ωi(p)

〉
によって決定される

S2からCPN−1 への写像を考える。π2(CPN−1)を計算し4、それらの写像がZ の
±1の要素に対応していることを示す。このZの要素というのは、問題にしている
縮退点に対応する粒子が右巻きか左巻きかに依存する。

(ii)
∣∣ωi(p)

〉
によって決定されるBrillouin zone全体 (S2にホモトープ)からCPN−1へ

の写像というものを考えて、それが π2(CPN−1)の単位元に属することを示す。

(iii) (ii)の写像のクラスは (i)で言及した小さな球面 S2からの固有 rayの写像のクラス
の和になっていることを証明する。

(iv) π2(CPN−1)の 2種類の表し方に矛盾が生じないようにするためには次の式が要求
される。すなわち

Nr(i, i+ 1)−Nr(i− 1, i) = N`(i, i+ 1)−N`(i− 1, i) (43)

ここで例えばNr(i, j)とは i番目と j番目のレベルの間の右巻き縮退点の個数を表して
いる。もしも iがフェルミ面より上の最低のエネルギーレベルで、かつ i+ 1がフェルミ
面下最高のエネルギーレベルだったとするとWeyl粒子の右巻きの種類数は Nr(i, i + 1)

に等しくなる。

(i)と (ii)より、π2(CPN−1)と同形であるZの整数を具体的に勘定する。それには次の
π2(CPN−1)からZへの同値関係を利用する:

π2(CPN−1)
j∗←−−− π2(S2N−1, S1)

∂−−−→ π1(S1)
∆−−−→ Z (44)

3.2 定理の証明

縮退点に対する π2(CP
N−1)

縮退点付近で無限小球面 S2を考える。次の写像

f : S2 → CPN−1 (45)

3N − 1次元の複素射影空間はN 次元複素空間の直線上の点を同一視したものである。つまりN 次元
複素空間上の直線は、N − 1 次元複素射影空間の “点”である。

4π2(· · · ) はホモトピー群を表す。
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はホモトピークラス [f ]を決め、それは π2(CPN−1)の要素になる。
関数 f は与えられたHと i番目のレベルでもって決定される。つまり、

p ∈ S2

S2 = {p | |p| = ε (無限小) }
(46)

に対して f は、
f(p) = { z

∣∣ωi(p)
〉
| z ∈ C\0} (47)

と与えられる。
ここで π2(CPN−1)と相対ホモトピー群 π2(S2N−1, S1)の間には同形写像が存在する。

後半の要素は次のタイプのホモトピークラスである

g : E2, S
1 → S2N−1, S1 (48)

ここでE2とは
E2 = {x ∈ R2 | x2 ≤ 1}

で左辺に現われる S1はE2の境界 (すなわち S1 = {x ∈ R2 | x2 = 1}) である。
S2N−1は複素N次元空間で

S2N−1 = {u ∈ CN | |u|2 = 1}

さらに右辺の S1は proportional vectorの部分集合で

S1 = {e1δu0 ∈ CN | δ ∈ R}

である。ここで u0とは
u0 ∈ S2N−1

である。

π2(CPN)と π2(S2N−1, S1)間の同値関係は次の関係式から導かれる。

f = π ◦ g (49)

ここで πというのは射影で
π : S2N−1 → CPN−1 (50)

すなわち、πは S2N−1の要素に属するような直線をCPN−1に変更する。この写像は 、
次の写像を派生させる。

j∗ : π2(S2N−1, S1)→ π2(CPN−1) (51)

この写像の定義は
j∗([g]) = [f ] = [π ◦ g] (52)
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である。
以上を図にすると下のようになる。

E2, S
1

g↙ [g] −−−→
j∗

[π ◦ g] ↘π ◦ g
S2N−1, S1 −−−−−−−−−−−−−−→ CPN−1

π

先の (49)式では無限小球面 S2がE2から得られる多様体と同一視できることを前提と
していて、その際は S1 = ∂E2は 1点 (すなわち北極N)と同一視するようにする。する
と S2\{N}とE2の内部は 1対 1に対応する。
S2上の点を (ε, θ, φ)で表すと、

Px = ε sin θ cosφ ,

Py = ε sin θ sinφ ,

Pz = ε cos θ

(53)

であり、N極 (θ = 0)と S極 (θ = π)以外でこの表式はユニークになっている。これをE2

で表すと

x1 =
π − θ
π

cos φ , (54)

x2 =
π − θ
π

sin φ (55)

となり、これは θ = π以外でユニークになっている。
上記 2つの対応関係は

S2のN極 ←→ E2の境界
S2の S極 ←→ E2の中心

である。

π2(S
2N−1, S1)

それでは、f に対応した gの形を具体的に構成してみよう。H(p)が p = pdegで対角化
されるようにCN の基底を選ぶことにする。そしてH(p)を p = pdegの周りでテイラー
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展開する:

H(p) = H(pdeg) + (p− pdeg)V




0
. . . 0

0

σ

0

0
. . .

0




+(p− pdeg)



b1 0

. . .

0 bN


 + (p− pdeg)




0
. . .

0

0 0

0 0

0
. . .

0




+O ((p− pdeg)2)

(56)

2項目は摂動理論の最低の次数で固有ベクトルを得るために重要な項である。
ここから

∣∣ωi(p)
〉

=




0
...

0

u

0
...

0




(57)

u =

(
u1

u2

)
(58)

を得て、
σP u = |P | u (59)

である。つまり upperレベル iでの正の固有値を得たのである。
関数 gとして

g =
∣∣ωi(p)

〉
(60)

と定義することにする。なおここのpとは pdeg付近の無限小球面S2の 1点である。uに
関しては次の制約を課す。
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(i) 規格化されていて |u| = 1。これは
∣∣ωi(p)

〉
が S2N−1上に留まるために必要。

(ii) 位相の制約として arg u2 = 0、すなわち

Reu2 > 0 , Im u2 = 0

この制約 (i)(ii)の元で先の解は

u =




px−ipy√
2|p|(|p|−pz)

,
√

1
2
(1− pz/|p|),


 (61)

もしくは球面座標で

u =

(
e−iφ cos 1

2
θ,

sin 1
2
θ ,

)
(62)

と表せる。
ここで忘れてはならないのは、このuは北極 θ = 0でユニークではないということであ

る。この位相の任意性は、上で行った位相への制約が u1 = 0に対して何も規定していな
いことに起因する。しかし北極というのはS1 = ∂E2に対応するので、問題にならない。
gは連続であり、S1上の gの値としてE2の内部からの値のみに限定することにする。
これにより π2(S2N−1, S1)のクラス j−1

∗ ([f ])に対する gの表現の構成が完了した。

g(θ, φ) =




0
...

0

e−iφ cos 1
2
θ

sin 1
2
θ

0
...

0




(63)

縮退点のヘリシティー
ここで [g]の境界写像 ∂による像を具体的な同形関係 (44)式で見付けることができる。

写像 ∂は境界 S1 = ∂E2 (すなわち θ = 0)に制限することなので、∂([g]) ∈ π1(S1)は単
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純に

g(φ)|S1 =




0
...

0

e−iφ

0
...

0




(64)

と表現できる。ここで
g(φ)|S1 ∈ S1 ⊂ S2N−1 (65)

である。S1 ⊂ S2N−1は北極において
∣∣ωi(p)

〉
の可能なあらゆる位相全てから成っている。

gは明らかにS1 ⊂ E2から S1 ⊂ S2N−1 への同相写像になっている。同形写像 ∂によって
クラス [g|S1] ∈ π1(S1) に関係付けられる整数は、定義から巻きつき数 (winding number)

でしかない。上の式の形からその巻きつき数は+1か−1のどちらかである。すなわち、

∆ ◦ ∂ ◦ j−1
∗ ([f ]) = ±1 (66)

縮退点で det V α
i > 0の場合、対応する系 P は右手系である。するとこの整数は−1で

ある。
このことが意味しているのは、i番目の (upper)レベルの状態によって左巻きのWeyl

fermionが記述されているということ。もしも det V α
i < 0ならば対応する座標系P は左

手系となり、故に g(θ, φ)に対して Px → −Pxという修正を加えて

g(φ)|S1 =




0
...

0

eiφ

0
...

0




(67)

を得て、これに対応する整数は+1である。

今のところ考察の対象にしているのは upperレベル iの正の固有値の場合だけである。
これを lowerレベル i + 1に対して

σP u = −|P |u (68)

と置き換えてみよう。そうすることはP を−P に置き換えることに対応する。このこと
は系の右手系と左手系を取り換えることと同等であり、det (V α

i )の符号を変えることと
同じ効果になる。
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これより π2(CPN−1)の整数要素に対して次の一覧が得られる。これらは縮退点の周り
の無限小球面S2に対応する。その球面は i番目のレベルでPの右手座標系の向きとする。

レベル iの縮退 (with i+1)

iに対して正のヘリシティー
i+ 1に対して負のヘリシティー

}
− 1の要素

iに対して負のヘリシティー
i+ 1に対して正のヘリシティー

}
+ 1の要素

(69)

Brillouin zoneの表面に対する π2(CP
N−1)

次に示すのはBrillouin zoneの表面 S2からCPN−1への写像 f̂BSが、π2(CPN−1)の同
形写像∆ ◦ ∂ ◦ j−1

∗ によって 0に対応するホモトピークラスに属しているということ
である。なおこの写像 f̂BSは固有状態

∣∣ωi(p)
〉
で決定する。

Brillouin zoneの 6つの面上の固有状態はそれぞれ反対面と同一である。また 4つの平
行な辺の組 3つに対しても

∣∣ωi(p)
〉
は同じであり、8つの頂点においても

∣∣ωi(p)
〉
は同一

である。これらのことに注意しつつ証明を行う。その手順は次の通り:

(i) 写像 f̂BS の f̂dへの連続的な変形によって、12辺全てと 8つの頂点を 1点とするよ
うなものに置き換えられる。

(ii) この変形写像 f̂dを用いて、f̂BS は 6つの項 (要素)の和であることを示す。なおそ
の 6つの項は 3つの組に分けられる。

(iii) それぞれの組の項の和は 0であることが示せる。故に 6つの項を全て足した結果も
0といえる。

(i)で主張した変形を行うために、まずはBrillouin zoneの表面 S2が
∣∣ωi(p)

〉
となる写

像 fBSによってCPN−1にどのように埋め込まれているかを考えてみよう。
周期性からBrillouin zoneの向き合う 2つの面は、f̂BSによってCPN−1の表面の同じ

pieceの反対向きの面として移される。さらにBrillouin zoneの 4つの平行な辺のセット
(3つ)は f̂BS によってそれぞれただ一つの閉じた曲線に移される。写像の結果として得
られたCPN−1 の 3つの曲線は閉じている (図 3参照)。なぜならば周期性から 8つの頂点
は必ずCPN−1の 1つの点に移されるからである。この点を起点として用いることにす
る。すなわち、S2の S極をこの点に移すような写像に話を限るのである。
CPN−1は単連結なので 3つの閉じた曲線をそれぞれただ 1点に縮める手段は存在す

る。その 1点というのは頂点の f̂BSによる像である。辺に限った f̂BS のこの変形は、辺
に限らない f̂BS の変形に拡張できる。その変形写像 f̂dという写像は全ての辺を 1点 (起
点)に移すような写像で、f̂BS は変形写像 f̂dとホモトープである。
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PSfrag replacements
BZ CPN−1CPN−1

deformationf̂BS

f̂d

図 3: 変形写像 f̂d

PSfrag replacements
a

図 4: Brillouin zone surface

証明の次の段階として (ii)を考える。これは π2の算法を思い出せば、当り前のことで
ある。Brillouin zoneの表面 S2を 2つの部分に分けてみよう: 1つ目は 1つの面であり、
2つ目は残りの 5つの面全てである。(図 4参照)

写像 f̂dは f̂aと f̂5によって定義される 2つの部分にわけることができる。π2(CPN−1)

は可換で、加法群になっているので

[f̂d] = [f̂a] + [f̂5] (70)

となる。

PSfrag replacements
a

a '

図 5:

(70)式右辺の 1つ目の写像 f̂aの方はS2の 1つの面 aに対応しているが、これは図 5に
あるような全ての辺の組を同一視することによって作られる“袋”からCPN−1への写像
になっている。すなわち、

f̂a : 図 5の S2表面→ CPN−1

(70)式右辺 2つ目のものは

f̂5 : 図 4の面 a以外の S2表面→ CPN−1
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である。
f̂5をさらに f̂bと f̂4に分けることもできる。

[f̂5] = [f̂b] + [f̂4] (71)

こういった作業を繰り返していけば、

[f̂d] = [f̂a] + [f̂ā] + [f̂b] + [f̂b̄] + [f̂c] + [f̂c̄] (72)

を得る。6つの項はそれぞれ一つの面に対応し、aと āは逆の面を表す。
PSfrag replacements

a
ā

図 6: Brillouin zone surface

(iii)の段階。表面 aと āは周期性によって向きが逆である。そのために f̂a と f̂āは互い
に鏡像の関係になっている。すなわち、

f̂ā = f̂a · ξ

ここで
ξ : S2 → S2

S2は面であって ξは S2の大きな円の鏡像である:

f̂ā = −f̂a (73)

同様の関係式は bと b̄や cと c̄にも成り立つ。そこで

[f̂d] = 0 (74)

が成り立つ。この [f̂d]は当然 [f̂BS ]と同じクラスなので、

[f̂BS ] = 0 (75)

ということになる。

証明の完成
Brillouin zone S2球面の表面は、縮退点の近傍の無限小 S2を含んでいる。ここですべ

ての無限小球面 S2を共通の起点を持つように変形する。π2は加群なので

[f̂BS ] =
∑

j

[fj] (76)
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と分けることができる。fjとは無限小球面S2 → CPN−1の写像で、jはすべての無限小
球面 S2を走る。この式の左辺が 0になることはすでに示しているので、

∑

j

[fj] = 0 (77)

がいえる。
(69)式の結果より、i番目と i + 1番目の縮退点に対応する+1(もしくは−1)と i番目

と i− 1番目の縮退点に対応する+1(もしくは−1)の和は、0であるということ。つまり、

Nr(i, i+ 1)−Nr(i− 1, i) = N`(i, i+ 1)−N`(i− 1, i) (78)

を得る。ここでNr(i, i+ 1)というのはレベル iとレベル i+ 1の縮退点の数で、i番目が
正のヘリシティーであるものとしている。

No-go定理として証明したいのは

Nr(i, i+ 1) = N`(i, i + 1) (79)

という式である。これは帰納法によって証明することができる。
まず最高のレベル i = 1に対しては明らかに

Nr(0, 1) = N`(0, 1) = 0

である。なぜなら i = 0のレベルはないから。そして (78)式を見れば明らかなように、
i− 1に対して

Nr(i− 1, i) = N`(i− 1, i)

が成立したなら、
Nr(i, i+ 1) = N`(i, i + 1)

も成立する。これで帰納法は完成し、(79)式の証明となる。

i番目と i+ 1番目のレベルの縮退点はそれぞれひとつのWeyl粒子の種類 (species)に
対応している。すなわち上の (79)式は「Weyl粒子の右巻きと左巻きは必ず同じ数だけ
現われる」ことを示している。これが no-go定理である。

3.3 理論に含まれるフェルミオンの最低数
前節の証明で用いたのと同じ手法を用いて、理論には少なくとも何個のダブラーが現

われるかを数えてみる。
証明に用いる大事な点についてここで軽く復習しておくと、まず 前節で示したことで

重要なのは、縮退点 (=粒子を表す)周りの S2を考えそこからCPN−1への写像を考えた
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とき、その π2(CPN−1)の要素として、右巻きなら−1,左巻きなら+1の要素が対応する
ということ。
また Brillouin zoneの境界面からCPN−1への写像を考え、その π2(CPN−1)の要素を

考えるわけだが、運動量の周期性からBrillouin zoneの各頂点はCPN−1上で同じ点に移
り、12本の辺は同じ点で交わる 3本の線に移ることがわかる。そして連続的な変形でもっ
て 12本の辺が同じ点に移るような写像を考えることでき、その写像の π2(CPN−1)を考
察の対象にした場合、Brillouin zoneの向かい合う面同士は π2(CPN−1)の要素として反
対符号のものを与えることになる。
以上のことから「右巻き粒子と左巻き粒子は同じ数だけ理論に存在する」ということ

を示した。この節では同じような考察で、「粒子は 3次元空間の場合、最低でも 8つ存在
する」ことを示す。
まずBrillouin zoneを図 7のように 2つに分けることにし、境界面を xと表す。

PSfrag replacements

a
ā

b1

b̄1

b2

b̄2c1

c̄1

c2

c̄2

x
x̄

図 7: Brillouin zoneの分割

このように分割した上でそれぞれのBrillouin zoneに対する π2(CPN−1) を計算する。
便宜上、分割したうちの片方をBrillouin zone 1、他方をBrillouin zone 2と呼ぶことに
する。

Brillouin zone 1に注目し、かつこの表面からCPN−1への写像として、12本の辺を同
じ 1点に移す写像を考える。
そのような写像を考えた場合、Brillouin zone 1の境界各頂点は 1点に移り、さらに面

xを囲む辺は 1点で交わる 2本の曲線に移される (図 8参照)。このような場合、連続的な
辺形でもって、これらの曲線を 1点に縮小することが可能である。そこでBrillouin zone

1の表面からCPN−1への写像として、3 節の f̂dからさらに連続的な変形をして面 xの
周囲も 1点に移す写像 f̂ddを考えることにする。これはもともとのBrillouin zone 1から
CPN−1への写像 f̂BZ1から連続的に変形したものなので

[f̂BZ1] = [f̂dd]

が成り立っている。
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図 8: 面 xの 4辺の変換結果

ここで 3節 (70)式と同じく f̂ddを分割していくと、

[f̂dd] = [f̂ād] + [f̂b1d] + [f̂c1d] + [f̂b̄1d] + [f̂c̄1d] + [f̂xd] (80)

となるが、面 b1や c1については (b1と b̄1は周期性を考えるとCPN−1の同じ面の表裏に
移ることから)

[f̂b1d] = −[f̂b̄1d] (81)

が成立しているので
[f̂dd] = [f̂ād] + [f̂xd] (82)

である。
同様の議論をBrillouin zone 2についても行えば、

[f̂BZ1] = [f̂ād] + [f̂xd]

[f̂BZ2] = [f̂ad] + [f̂x̄d]
(83)

である。
ここで面 aについては先と同じく周期性を考えて

[f̂ad] = −[f̂ād] (84)

が成立している。さらに面 xについて考えてみるが、面 xと面 x̄はやはりCPN−1でも
同じ面の表裏に移ることから

[f̂xd] = −[f̂x̄d] (85)

が成り立つ。
(84)式と (85)式を考えることによって結果として

[f̂BZ1] = −[f̂BZ2] (86)

が得られる。
この式は仮に白丸を右巻き黒丸を左巻き粒子とした際に、図 9のようにBrillouin zone

1とBrillouin zone 2に異なるタイプの粒子が同数あることを示している。
図 9の場合、

[f̂BZ1] = −1 , [f̂BZ2] = +1
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図 9: 右巻き粒子と左巻き粒子がひとつずつある場合

図 10: 右巻き粒子と左巻き粒子が片方のBrillouin zoneにある場合

となっている。この他にも (86)式を満たしそうなものとして、片方の Brillouin zoneに
右巻きと左巻きが同数あり、他方の Brillouin zoneには粒子がないという場合を考える
かもしれない (図 10参照)。
しかしこれは許されず、片方のBrillouin zoneに右巻きと左巻きが 1つずつあったとす

ると、他方のBrillouin zoneにも左巻きと右巻きが1つずつ存在しなければならない (図
11参照)。

図 11: 二分したBrillouin zoneには右巻き粒子と左巻き粒子は等しく存在する

なぜならば、図 10のように片方のBrillouin zoneにだけ粒子が偏在していたとすると、
例えば面 āに注目した際に、次の図 12のように面内に+1の部分と−1の部分ができる。
ところがそれと同じ面の反対側であるはずの面 aにはなんの要素もないということにな
る。これでは aと āが同じ面の反対側になりえない。
正しく考えるならば、12の図に対しては、次の図 13のようになるはずである。
面 xについても同様に議論でき、結果として図 10のように片方に粒子を偏在させよう

としても、図 11のように他方にも対応する粒子が必要になる。
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PSfrag replacements ā

+1

−1

図 12: 片方のBrillouin zoneに偏在した右巻き粒子と左巻き粒子

PSfrag replacements a

−1

+1

図 13: 片方のBrillouin zoneに偏在した右巻き粒子と左巻き粒子 2

以上はBrillouin zoneをある 1方向について二分した場合について論じているが、これ
はその方向の選び方に依存しない。任意の方向に対して成り立つ議論であった。そこで
それぞれの方向に対して、以上の議論を当てはめることにする。すると、図 14のように
なる。
まず何も粒子を配置しない状態。これは (86)式の条件をちゃんと満たしている。が、

このような状態を考えてもなにも出てこない。少なくとも 1つの粒子が理論を構成する
上で必要であろう。
そこで 1つの粒子をBrillouin zoneに配置したとする。はじめにもっと多くの粒子を配

置してしまうことも可能だが、余分な粒子 (doubler)を問題にしているのだから、はじめ
に入れる粒子は少ない方がいいだろう。
しかし 1つ入れるとBrillouin zoneを二分したときの他方に反対ヘリシティの粒子がな

ければならない。さらに別の方向についてもBrillouin zoneの二分を行うとさらに粒子
は増え、またさらに別の (残りの)方向についても Brillouin zoneの二分を行うことがで
き、結果としては図 14の (e)にあるように 8つの粒子 (dを次元数として 2d個)の粒子が
現われることになる。
つまり格子の理論でフェルミオンを考えた場合、フェルミオンは最低でも 2d 個現わ

れる。
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(a) (粒子が何もない状態)

(b)で粒子をひとつ配置すると (e)のようになる

(b) (c) (d)

(e)

図 14: Brillouin zoneでみる最低個数の粒子数
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4 ダブラー問題に対するWilsonのやり方
3節で見たNilsen-Ninomiya定理が証明されるまでにはやや時間がかかったものの、2

節で確認したようなダブラーが存在するという問題は早くから知られていた。
この問題に対して、格子理論を提案したWilsonは

ダブラーに質量を与える項を導入し、ダブラーを現われなくしてしまう。

という対策を考えた。通常の期待通りの粒子を与える pµ = 0の位置には補正がつかず、
pµ = ±π/aの位置にのみ補正が加わるような項をDirac演算子に付け加えるのである。

4.1 Wilson fermion

具体的には連続理論のDirac演算子: D = iγµ∂µ −M の代わりに

D = iγµ∂∗µ −M −
a

2
4∗µ4µ (87)

としてしまうのである。なお上式の aは格子サイズで、連続極限: a → 0をとると、元
のDirac演算子に戻る5。−a

2
4∗µ4µの部分がWilsonの発想で、この部分は格子間隔 aに

比例する新たな質量項のようなものになっている。
この (87)式のDirac演算子で、ダブラーがなくなっていることを簡単に見てみよう。2

節でやったようにフェルミオンの相関関数を計算して、粒子がでてくる様子を見てみる。
2節の繰り返しになるが、フェルミオンの作用は

SF = a4
∑

x

ψ̄(x)Dψ(x) (88)

である。ここでK(x, y)を次のように導入する:

SF = a4
∑

x,y

ψ̄(y)K(x, y)ψ(x) (10)

このK(x, y)は (87)式のDirac演算子を使った (88)式との整合性を保つためには、

K(x, y) =
1

2
γµ(δy x−µ̂ − δy x+µ̂)−Mδy x −

a

2
(δy x−µ̂ − 2δx,y + δy x+µ̂) (89)

でなければならない。
(87)式のDを用いて、

〈
ψψ̄
〉

=

∫
Dψ̄Dψ exp[−

∫
d4x′ψ̄Dψ]ψψ̄∫

Dψ̄Dψ exp[−
∫
d4x′ψ̄Dψ]

5∂∗µ や4µ , 4∗µ の定義は 7ページ参照
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を計算するわけだが、これは 2節でやったように、
〈
ψ(x)ψ̄(y)

〉
= K−1(x, y) (11)

これに上の (89)式と

δxy =

∫ π/a

−π/a

d4p

(2π)4
eip(x−y) (13)

を用いて計算すれば、(87)式で付け加えられた項は質量項への補正を与えて、

〈
ψ(x)ψ̄(y)

〉
=

∫ π/a

−π/a

d4p

(2π)4

iγµp̃µ − M̃
p̃2 + M̃2

eip(x−y) , (90)

p̃µ =
1

a
sin apµ ,

M̃ = M +
1

a
(1− cos apµ) (91)

となるのである。
(91)式の最後の項が、Wilsonによる補正項である。(90)式の分母が 0になるところに

粒子があると考え、さらにM = 0のカイラルフェルミオンを考えた場合 (91) 式の補正
項によって、単純にフェルミオンを格子に乗せた場合のダブラー (p = ±π/a)に質量 (の
ようなもの)が与えられて、粒子ではなくなっているのがわかるだろう。

4.2 Wilsonのやり方におけるダブラーについて
単純にフェルミオンを格子に乗せると運動量の各方向に対して p̃µ = 1

a
sin apµとなり、

pµ = 0以外に pµ = π/aという粒子がでてきてしまう。それがダブラーであり、このよ
うに運動量に周期性があるかぎりダブラーは必ず現われるというのがno-go定理である。
Wilsonのやり方はこれらに対してどのような対処をしているのだろうか。

Wilsonは単純にフェルミオンを格子に乗せるだけでなく、余分な項−a
2
4∗µ4µを付け

加えている。この項は運動量空間においては 1
a
(1 − cos apµ)という項を付け加えること

になる。この 1
a
(1− cos apµ)という項をよく見てみると、期待する粒子を表す pµ = 0で

は 0になり、ダブラーである pµ = π/aでは 2aという “重み”を粒子に与えている。
つまりWilsonの方法では、p̃µの周期性は保ちつつ、うまくダブラーのみに重みを与

える異なる周期を持つ項で補正しているのである。この項のおかげでダブラーは粒子と
して存在しないようになっている。この補正項は格子サイズ aに比例するために、連続
極限ではちゃんとWeyl fermionの式を再現する。
この方法はフェルミオンにダブラーが存在することが知られてすぐに試みられた対処

法であり、計算機によるシミュレーションではとてもうまくいっている。計算機による
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シミュレーションでは、後に述べるLüscher fermion(6節参照)よりも収束性がよく、ま
た計算させやすい。
しかしこの方法が完璧だというわけではない。それは計算機シミュレーションではな

く、専ら理論的な観点からの不満である。
このWilsonの補正項は、それが質量に相当する項を与えることからもわかる通り、カ

イラル対称性を明らかに破っているのである。計算機で計算する場合には、カイラル対
称性を重要視する必要はほとんどないだろう。しかし純粋に理論としてみた場合、もし
くは自らの手で解析しようという場合には、カイラル対称性が完全に失われているとい
うのはなんとも心許ないところである。
つまりこのWilsonのやり方は、計算法としては十分な効力を持っているが、カイラル

対称性を完全に犠牲にしているという点で物足りなさがあるということである。そのた
めにWilson fermion以外のやり方もいろいろと検討されることになったのである。この
論文ではWilson以外のやり方として、staggerd fermionと Lüscher fermionと呼ばれる
2つの方法に注目している。

4.3 超対称性への拡張に関するコメント
この節を終えるにあたって、格子における超対称性、特にWilson fermionの考え方を

用いた超対称性への拡張について若干のコメントを付け加えておこう。
Wilsonのやり方は早くから知られていただけに、超対称性への拡張も早くから検討さ

れている。たとえば文献 [27]といった論文である。(なおこの文献の数値シミュレーショ
ンについては文献 [32] がある)

格子で超対称性を表すための困難はいくつかあるが、特にこのWilsonのやり方におけ
る弱点は、カイラル対称性に対してそうであったのと同じく、“質量項の存在”である。
Wilson fermionを用いた超対称性の格子理論は、gauginoに質量項を導入するため、超
対称性を確保することができないのである。
もちろん連続極限では超対称性が再現できるようになっていて、それを根拠にしてこ

の方法は正しく非摂動効果を採り入れていると信じられているのである。
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5 Staggerd Fermions

4節でみたWilson fermionと並んで広く知られているダブラーを回避する手段に、stag-

gerd fermionと呼ばれるものがある。
これは右巻きのフェルミオンと左巻きのフェルミオンを別々のサイトに乗せ、ダブラー

の分の自由度もさらに別のサイトに乗せて、格子の各サイトにはそれぞれ 1つだけ自由
度を対応させるというやり方。そのことによりフェルミオンの各自由度にとっての有効
格子サイズは 2倍になり、それ以上のダブラーは現われなくなる。

Staggerd fermionの考え方:

有効格子サイズ (effective lattice spacing)が 2倍になるようにフェル
ミオンの自由度を格子の各サイトに分配する。

5.1 概要
2節でどのようにダブラーが存在すると判断したかを思い出してみると、フェルミオ

ンの相関関数の分母が 0になる点が複数ある、ということからである。その式は

〈
ψ(x)ψ̄(y)

〉
=

∫ π/a

−π/a

d4p

(2π)4

iγµp̃µ −M
p̃2 +M2

eip(x−y) , (15)

p̃µ =
1

a
sin apµ (16)

であるが、staggerd fermionでは特にここの積分範囲:

−π
a
≤ pµ ≤

π

a
(14)

に注目する。
(15)式の積分範囲に現われている格子サイズ aの部分が 2aならば、ダブラーは現われ

ないことになるだろう。実際の格子サイズを変えることはできないので、各スピノール
の成分に関係する格子サイズ (有効格子サイズ)が 2aになるように考えるのである。
例えば具体的に 2次元の場合は、スピノールは 2成分なので偶数番目のサイトに左巻

き成分を配置し、奇数番目のサイトに右巻き成分を配置するというようにするのである。
そのようにすれば、それぞれの成分にとっての有効格子サイズは通常の格子サイズの 2

倍になる。
ただ一般にスピノールの自由度は全ての方向の有効格子サイズを 2倍にするには不足

している。2次元の場合でも各方向で有効格子サイズを 2倍にするためには 4 つのサイ
トになにかしらの自由度を配置する必要があるのに対して、スピノールの自由度は 2つ
しかない。このままでは自由度が不足している。
その不足分を補うために、staggerd fermionではフェルミオンにフレイバーの自由度

を与えて、複数のフェルミオンを用意する。
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2次元での例を続けると、ひとつめの方向には左巻き成分と右巻き成分を交互に配置
し、ふたつめの方向では異なるフレイバーのフェルミオン (例えば uクォークとdクォー
ク)を交互に配置する…というものである。(図 15 参照)

PSfrag replacements

a

a

fermion 1 (left-handed)
fermion 1 (right-handed)
fermion 2 (left-handed)
fermion 2 (right-handed)

図 15: Staggerd fermion (2次元)

一般に次元数を dとしたときにどれだけ余分なフェルミオンが必要かを考えてみる。
有効格子サイズ (effective lattice spacing)を 2倍にするために必要なサイト数は 2dで

あるのに対し、d次元のスピノールの成分の数は 2d/2である6。なので、結局 2d/2個の異
なるフェルミオンが必要ということになる (表 1参照)。ちなみに 4次元の場合は、4種類
のフェルミオンが必要ということになる。

格子のサイト数 2d

スピノールの成分数 2d/2

⇓
2d/2種類のフェルミオンが必要

表 1: Staggerd fermionのフレイバー数 (d次元)

5.2 2次元の staggerd fermionとカイラル対称性
2次元の場合について、具体的に staggerd fermionを構成してみよう。

単純な考え方
まずは単純な考え方でフェルミオンの自由度を分配して、それに対するカイラル対称

性がどのように実現されているのかを見てみる。なお、この小節でのやり方は、文献 [7]

6偶数次元であるとする
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を参考にしている7。

2次元の γ行列としては

γ0 =

(
0 1

1 0

)
, γ1 =

(
0 1

−1 0

)
(92)

を選んでおく。
フェルミオンのスピノールとしての自由度を各サイトに分配することを考えるわけだ

が、まず次の性質を満たす 1成分の場 φを考えてみる。

∂0φ = ∂1φ (93)

この φを格子上の各サイトに配置する。
ここで φ′として

φ′(n,m) = (−1)n+mφ(n,m) (94)

を定義する。ただしここの n,mはそれぞれ 0方向,1方向のサイト番号であるとする。こ
の φ′に関して、n: 偶数 , m: 偶数 の場合を考えてみると、(93)式より、

∂∗0φ
′(n,m) = ∂∗1φ

′(n,m) (95)

を満たす。これに対して n: 偶数 , m: 奇数 の場合を考えてみると、

∂∗0φ
′(n,m) = (−1)∂∗0φ(n,m)

= (−1)∂∗1φ(n,m)

= (−1)(φ(n,m + 1)− φ(n,m− 1))

= −∂∗1φ′(n,m) (96)

となる。つまり、n: 偶数 , m: 偶数 は ψLを表し、n: 偶数 , m: 奇数 は ψRを表して
いる。
同様に nの偶奇にも注意すると、

ψ1
L(n.m) ↔ φ(n,m) (n,m : even )

ψ1
R(n.m) ↔ (−1)mφ(n,m) (n: even, m: odd )

ψ2
L(n.m) ↔ (−1)n+mφ(n,m) (n,m : odd )

ψ2
R(n.m) ↔ (−1)nφ(n,m) (n: odd, m: even )

(97)

の対応ができている。これが望んでいたフェルミオンの自由度の分配のやり方といえる。

7Susskindの論文 [7]では、2次元とせず 1+1次元として考えている。つまり時間成分を特別扱いする
ことで、2次元に関しては特に新たにフレイバーを考えないで済むようになっている。

38



並進不変性とカイラル対称性
さて (93)式を満たす場 φの作用を考えてみると、

S = a2
∑

n,m

φ†(n,m)(∂∗0 + ∂∗1)φ(n,m) (98)

である。
この作用は `.`′を任意の整数として、

{
n → n + `′

m → m + `
(99)

で対称になっている。
作用のこの対称性は、偶数の `に関してはψLをψLに, ψRを ψRにしているだけだが、

奇数の `に関しては、ψLを ψRに, ψRを ψLに変換している。これはまさに γ5の効果で
あり、この 2次元の staggerd fermionの考え方では、カイラル対称性はサイトを奇数個
ズラす対称性を表しているといえる。
これまではフェルミオンの質量項を入れていなかったので、作用 (98)式がカイラル対

称性 (サイトを奇数ズラす対称性)があるのも頷ける。では、フェルミオンの質量項を考
えた場合にこのカイラル対称性はどうなるだろうか。
フェルミオンの質量項はmψ̄ψの組合せである。これを φで考えると、

∑
Mψ̄(n,m)ψ(n,m) = M

∑
ψ†L(n,m)ψL(n,m)− ψ†R(n,m)ψR(n,m)

→M
∑

n,m

(−1)mφ(n,m) (100)

となり、m→ m + ` ( `: 奇数)の対称性は消えている。これは質量項の存在によってカ
イラル対称性が消えることとちゃんと整合している。

問題点と改良
ここまでの話は文献 [7]を参考にして、単純にフェルミオンの自由度を分配し、新し

くフレイバーを導入した。この作用はこのままでは、異なるフレイバー同士の運動項が
存在していて、その点が望ましくない。運動項としては、同一のフレイバー同士の積に
なっている方がいいだろう。
そのための方法もある。
それは格子の各サイトに単純にフェルミオンのスピノール成分を配置するのではなく、

格子の各サイトに分配された自由度の組み合せでもって、新たにフェルミオンのスピノー
ル成分を定義するのである。
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具体的にいま考えている 2次元の場合なら、

γ0 =

(
0 1

1 0

)
, γ1 =

(
0 1

−1 0

)
(92)

としているので、

ψ1
L = φ+ φ12

ψ1
R = φ1 − φ2

ψ2
L = φ1 + φ2

ψ2
R = φ− φ12

(101)

という組み合せでスピノールの成分を定義すればよい。なおφ, φ1, φ2, φ12については図 16

を参照の通りで、

φ = φ(n,m) (n,m: even)

φ1 = φ(n,m) (n: even , m: odd)

φ2 = φ(n,m) (n: odd , m: even)

φ12 = φ(n,m) (n,m: odd)

(102)

と考える。

PSfrag replacements

φ φ1

φ2 φ12

図 16: 2次元の staggerd fermion (その 2)

5.3 d次元での staggerd fermion

同様の議論を任意の d次元についても扱っておこう。ここでははじめからフェルミオ
ンのスピノール成分は各サイトに分配された自由度の線型結合で得られるものとする。

任意のd次元について
格子の各サイトにスピノール場ψが分配されているとする。ひとまずこの段階では成

分でなくスピノール全体がサイトに乗っていると考えておく。その ψを次の関係でχと
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結びつける。なおここのχは ψと同じくスピノールの成分を持つもので、単に書き換え
を行っているだけである。





ψα(x) =
1

N0

{
(γ1)x1(γ2)x2 · · · (γd)xd

}
αβ
χβ(x)

ψ̄α(x) =
1

N0
χ̄β(x)

{
(γd)xd · · · (γ2)x2(γ1)x1

}
βα

(103)

なおここで格子空間における位置 xとして x = (ax1, ax2, · · · , axd)であるとしている。
N0は適当な規格化定数とする。
考える作用は

S = ad
∑

x

[
ψ̄(x)Dψ(x) +Mψ̄(x)ψ(x)

]

=
1

2
ad−1

∑

x,µ

[
ψ̄(x)γµψ(x + aµ̂)− ψ̄(x)γµψ(x− aµ̂)

]
+Mad

∑

x

ψ̄(x)ψ(x)
(104)

である。これを χ, χ̄を用いて表現することを試みる。すると具体的に計算して明らかな
ように、

ψ̄α(x)γµαβψβ(x+ aµ̂) = (−1)x1+x2+···+xµ−1χ̄α(x)χα(x+ aµ̂)

である。(この式を考えるときは ψ̄(x)と ψ(x + aµ̂)では (γµ)の数が 1つ異なることに注
意せよ。)

ここで新しい変数として

ηµ(x) = (−1)x1+x2+···+xµ−1 , η1(x) = 1 (105)

を導入すると、

ψ̄α(x)γµαβψβ(x+ aµ̂) = ηµ(x)χ̄α(x)χα(x+ aµ̂)

ψ̄α(x)γµαβψβ(x− aµ̂) = ηµ(x)χ̄α(x)χα(x− aµ̂)

ψ̄(x)ψ(x) = χ̄(x)χ(x)

(106)

が成立している。これらを用いて (104)式を書き換えれば、

S =
1

2
ad−1

∑

x,µ

ηµ(x) [χ̄α(x)χα(x+ aµ̂)− χ̄α(x)χα(x− aµ̂)]+Mad
∑

x

χ̄α(x)χα(x) (107)

となる。ここまでは、あくまで (104)式を書き換えただけである。

そしてここで、発想をひとつ飛躍させる。この式に現われているスピノールの足であ
るαをなくしてしまうのである。そうして得られた式が d次元における staggerd fermion

の作用である。もとの χと区別するためにこれを φと記述することにすると:

S =
1

2
ad−1

∑

x,µ

ηµ(x)
[
φ̄(x)φ(x+ aµ̂)− φ̄(x)φ(x− aµ̂)

]
+Mad

∑

x

φ̄(x)φ(x) (108)
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が d次元の staggerd fermionの作用なのである。
χをスピノールでなく 1成分の関数だと考えると、(103)式は左辺が 2d/2行で右辺が

2d/2× 2d/2の行列となってつり合わない。そこでその分としてフェルミオンにフレイバー
を導入して、

[
ψ1(x), ψ2(x), · · · , ψ2d/2(x)

]
=

1

N0
(γ1)n1(γ2)n2 · · · (γd)ndφ(x) (109)

とするのである。

5.4 Staggerd fermionにおけるダブラー回避の考え方について
Staggerd fermionではどのようにしてダブラーの発生を防いでいるのだろうか。それ

を考えるために先の (108)式の作用を、あらためてフェルミ場 ψf で書き表してみよう。
フェルミオンと場に分配された自由度の間の関係:

[
ψ1(x), ψ2(x), · · · , ψ2d/2(x)

]
=

1

N0

(γ1)x1(γ2)x2 · · · (γd)xdφ(x) (109)

の形に注意すると、ψf は各方向に 2a飛びで同じものが配置されているのがわかるだろ
う8。そこで、空間は大きさが 2aの格子に分割されていて、その大きな格子の各サイト
に一辺が aの単位格子が存在していると考えよう。フェルミオンはその単位格子ごとに
分配されているとするのである。(図 17を参照)

PSfrag replacements

y

a

2a

図 17: 空間に単位格子を配置させる

大きな格子サイズをAと表すことにして (つまりA = 2a)、その格子のサイトを示す
座標を yとする。また単位格子内の位置を表すための座標として ρを導入する。これら
と元の格子の座標 xとの関係は、

xµ = 2yµ + ρµ (110)

8ただしメトリックは全て正とした。負のメトリックがある場合は 2aごとに符号の変化もある。
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である。ただし
x = a(x1, · · · , xµ, · · · , xd) xµ : integer

y = A(y1, · · · , yµ, · · · , yd) yµ : integer

ρ = a(ρ1, · · · , ρµ, · · · , ρd) ρµ = 0, 1

としている。
さて xから y, ρへの書き換えは少しずつ確認していこう。まずは φ(x+aµ̂)−φ(x−aµ̂)

がどのように書き換えられるかだが、これは ρの値 (格子点 yにある単位格子内の位置)

によって状況は変わってくる。つまり次の関係式:

x + aµ̂ = δρµ,1

{
yµ → yµ + 1 ,

ρµ(= 1)→ ρµ − 1(= 0)

}

+ δρµ,0

{
yµ → yµ ,

ρµ(= 0)→ ρµ + 1(= 1)

} (111)

に注意する必要がある (図 18も参照せよ)。

PSfrag replacements

y y + Aµ̂
ρµ = 1

+aµ̂ +aµ̂

µ̂

図 18: x+ aµ̂の効果

これより、
φ(x+ aµ̂) = δρµ,1φρ−aµ̂(y + Aµ̂) + δρµ,0φρ+aµ̂(y) (112)

が得られる。なおここで
φ(x) = φρ(y)

と表記している。φの下付き添字はスピノールの足ではないので混同しないように。ρは
位置 yにある単位格子内の位置を表している。
同様の関係式は x− aµ̂に関しても考えられて、

φ(x− aµ̂) = δρµ,1φρ−aµ̂(y) + δρµ,0φρ+aµ̂(y − Aµ̂) (113)

これらに注意すると、

φ(x+ aµ̂)− φ(x− aµ̂) = δρµ,1 [φρ−aµ̂(y + Aµ̂)− φρ−aµ̂(y)]

+ δρµ,0 [φρ+aµ̂(y)− φρ+aµ̂(y − Aµ̂)]
(114)
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という関係が成り立つことが示せる。
また作用に現われる ηµ(x)だが、

ηµ(x) = (−1)x1+x2+···+xµ−1

= (−1)ρ1+ρ2+···+ρµ−1 ≡ ηµ(ρ)
(115)

が成り立つ。
以上を用いて (108)式:

S =
1

2
ad−1

∑

x,µ

ηµ(x)
[
φ̄(x)φ(x+ aµ̂)− φ̄(x)φ(x− aµ̂)

]
+Mad

∑

x

φ̄(x)φ(x) (108)

を y, ρに書き直す。ただし議論したいのはカイラルフェルミオンのダブラーがどう扱わ
れているかなので、以下ではM = 0に話を限定し φの運動項のみに注目する。M 6= 0

のときは単にM
∑

f ψ̄
fψf の項が付け加わるだけである。

さてM = 0として話を進めると、

S =
1

2
ad−1

∑

x,µ

ηµ(x)
[
φ̄(x)φ(x+ aµ̂)− φ̄(x)φ(x− aµ̂)

]

=
1

2
ad−1

∑

y,ρ,µ

ηµ(ρ)φ̄ρ(y)
{
δρµ,1 [φρ−aµ̂(y + Aµ̂)− φρ−aµ̂(y)] + δρµ,0 [φρ+aµ̂(y)− φρ+aµ̂(y − Aµ̂)]

}

=
1

2
ad−1

∑

y,ρ,ρ′,µ

ηµ(ρ)φ̄ρ(y) {δρ−aµ̂,ρ′ [φρ′(y + Aµ̂)− φρ′(y)] + δρ+aµ̂,ρ′ [φρ′(y)− φρ′(y − Aµ̂)]}

(116)

ここでさらに

δρ−aµ̂,ρ′ [φρ′(y + Aµ̂)− φρ′(y)] + δρ+aµ̂,ρ′ [φρ′(y)− φρ′(y − Aµ̂)]

=
1

2
(δρ−aµ̂,ρ′ + δρ+aµ̂,ρ′) [φρ′(y + Aµ̂)− φρ′(y − Aµ̂)]

+
1

2
(δρ−aµ̂,ρ′ − δρ+aµ̂,ρ′) [φρ′(y + Aµ̂)− 2φρ′(y) + φρ′(y − Aµ̂)]

(117)

という関係を使い、次のように Γ,Γ5という表記を導入すると

Γµρρ′ ≡ ηµ(ρ)(δρ−aµ̂,ρ′ + δρ+aµ̂,ρ′)

Γ5µ
ρρ′ ≡ ηµ(ρ)(δρ−aµ̂,ρ′ − δρ+aµ̂,ρ′)

(118)

から、

S =
1

4
ad−1

∑

y,ρ,ρ′,µ

(
φ̄ρ(y)Γµρρ′ [φρ′(y + Aµ̂)− φρ′(y − Aµ̂)]

+ φ̄ρ(y)Γ5µ
ρρ′ [φρ′(y + Aµ̂)− 2φρ′(y) + φρ′(y − Aµ̂)]

) (119)
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である。
さて φと ψの間の関係だが、

ψα
f(x) =

1

N0

{(γ1)x1 · · · (γd)xd}αfφ(x)

=
1

N0
{(γ1)ρ1 · · · (γd)ρd}αfφρ(y)

≡ Uα
f(ρ)φ(x)

(120)

ψ̄fα(x) =
1

N0
φ̄(x){(γd)xd · · · (γ1)x1}fα

=
1

N0
φ̄(y){(γd)ρd · · · (γ1)ρ1}f α

= φ̄(x)U †fα(ρ)

(121)

で、(ただしメトリックは全て正だとした9)

U †fα(ρ)Uα
f(ρ) = 2−d/2δρρ′

に注意すると10、 {
φρ(y) = 2d/2U †fα(ρ)ψα

f (x)

φ̄ρ(y) = 2d/2ψ̄f α(x)Uα
f (ρ)

(122)

である。
さらに

∑

ρρ′

Uα
f(ρ)Γµρρ′U

†f ′
α′(ρ

′) = (γµ)αα′δ
ff ′

∑

ρρ′

Uα
f(ρ)Γ5µ

ρρ′U
†f ′

α′(ρ
′) = (γ5)αα′(γ

µγ5)ff
′

の関係も用いると、

S =
1

2
Ad−1

∑

f,y,µ

ψ̄f (y)γµ
[
ψf (y + Aµ̂)− ψf(y − Aµ̂)

]

+
1

2
Ad−1

∑

f,f ′,y,µ,α,α′

ψ̄fα(y)(γ5)αα′(γ
µγ5)ff

′
[
ψf
′

α′(y + Aµ̂)− 2ψf
′

α′(y) + ψf
′

α′(y − Aµ̂)
]

(123)

である。これが求めたかった staggerd fermionをフェルミ場 ψで表現した式である。

9もし一部のメトリックが負ならば、U の定義に (−1)y1+y2+···といった項を含めて定義し直せばよい。
10規格化定数 N0 が N0 = 2d/2 であることにも注意。
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この式を見るとフェルミオンに対する通常の運動項の他に、異なるフレイバー間を繋ぐ
相互作用項が現われていることがわかるだろう。まず (123)式の第二項はWilson fermion

と同じくダブラーに質量を与える項である。この第二項によって、staggerd fermionで
ダブラーは現われなくなっている。
この質量項がWilson fermionの質量項とどう違うかを確認してみよう。まず先に (123)

式を次のように書き直しておこう。次の式ではA→ a, y → xと書き替えている。

S = a4
∑

f,x,µ

ψ̄f (x)γµ∂∗µψ
f(x) +

a

2
a4

∑

f,f ′,x,µ,α,α′

ψ̄fα(x)(γ5)αα′(γ
µγ5)ff

′�µψf
′

α′(x) (124)

ここで�µ ≡ 4∗µ4µ (ただし µの和は取らない)という記号を導入した。同様の記号を用
いて、Wilson fermionで複数のフレイバーを導入した場合を記述し、見比べてみると、

S = a4
∑

f,x,µ

ψ̄f(x)γµ∂∗µψ
f(x) +

a

2
a4

∑

f,f ′,x,µ,α,α′

ψ̄fα(x)δαα′δ
ff ′�µψf

′

α′(x) (125)

となる。これは先の式とよく似ているが、Wilson fermionの式である。
この 2つの式を見比べれば、

• 運動項は共通していること

• 格子サイズに比例し2階微分に相当する差分演算子がダブラーに質量を与える効果
を出していること

が見てとれるだろう。運動項が共通しているのは、これらが連続極限でWeyl fermionを
表現するためには当然のことである。
そして格子サイズに比例する “質量項”の違いだが、これはつまり (γ5)αα′(γ

µγ5)ff
′ と

(1l )αα′(1l )ff
′ の違いである。つまりWilson fermionでは異なるフレイバー間は完全に独

立した関係なのに対し、staggerd fermionでは異なるフレイバー間に関係が付けられて
いる。
また staggerd fermionの質量項とWilson fermionの質量項との違いは、次の対称性の

下で不変になっているかどうかも挙げられるだろう。

ψfα → (eεγ5)ff ′ψ
f ′
α

これは異なるフレイバー間のカイラル変換のようなものである。staggerd fermionの質
量項はこの変換の下で不変の形になっている。
つまり staggerd fermionでもWilson fermionのときと同じく質量項を入れてダブラー

を消しているものの、staggerd fermionではその質量項の入れ方が特殊なカイラル不変性
を保つような形になっているのである。ただしそういった質量項の入れ方をした分、異
なるフレイバー間を結ぶ相互作用が現われている。
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5.5 超対称性への拡張例: Itohらの試みについて
Staggerd fermionを用いて超対称性を表現しようという試みも古くからなされている。

論文としては文献 [31]などがある。
ここではそういった以前からある方法ではなく、ごく最近に提案された方法について

検討してみたい。ここの議論は文献 [38]によるもので、これは 2001年末に提案されたも
のである。この論文は続編として文献 [39]があり、さらにいくつかの続く論文も予定さ
れているようである。

この理論の概要
この理論はゲージ場とフェルミオンの場に対する作用と変換として、ごく自然な形を

導入する。ただその導入のやり方では新たな変数を導入しなければならない。そこで超
対称変換の下で理論が不変になるように条件を課すことで、その新たに導入された変数
の間に成り立つ関係式を導くのである。
またそれらの作用や超対称変換は、一辺が 1格子サイズの単位格子上で定義されたもの

で、これを one-cell模型と呼ぶ。one-cell模型の作用および超対称変換が得られたならば、
それを全空間に拡張することも可能であるというのが、文献 [38]における主張である。
それでは one-cell模型に対する作用と超対称変換を順に見ていこう。

ゲージとフェルミオンに対する格子超対称変換
ゲージ場とフェルミオンに対する作用は、それが単位格子 (一辺が格子サイズ a であ

るような格子)上のみに限られている点とフェルミ場が実数値である点を除いて、通常と
同じ形で導入する。つまり、

Sg = −β
∑

n,µν

tr (Un(µν),µν + Un(µν),νµ)

Sf =
∑

n,ρ

bρ(n(ρ)) tr
{
ψn(ρ)Un(ρ),ρψn(ρ)+ρ̂U

†
n(ρ),ρ − ψn(ρ)+ρ̂U

†
n(ρ),ρψn(ρ)Un(ρ),ρ

} (126)

である。なおいくつか導入した記法について説明しておくと、n(µν)は plaquette (n, µν)

の基点 (base point)で (図 19も参照)、また n(ρ)という記号は ρ座標に関して nρ = 0と
なる点である。フェルミオンの作用についている係数 bρは通常の staggerd fermionに現
われるものと同じもの。
ρ(n)という記号も用いることにして、サイト nから出発して cell内の ρ̂と−ρ̂を示す

ものとする。ゲージ場の超対称変換は次のように定義される。

δUn(µ),µ =
∑

ρ

{
α
ρ(n)
n(µ),µξ

ρ(n)
n(µ)Un(µ),µ + Un(µ),µα

ρ(n)
n(µ)+µ̂,µξ

ρ(n)
n(µ)+µ̂

}
(127)

47



PSfrag replacements

µ̂

ν̂

基点

図 19: plaquetteの基点

ここで ξµnとは gauge-covariantly translated fermionでUn,µψn+µ̂U
†
n,µである。さらにαは

グラスマン数である。
フェルミ場に対する超対称変換は、

δψn =
∑

0<µ<ν

C(µν)(n)
n

[
Un,(µν)(n) − Un,(νµ)(n)

]
(128)

なお (µν)(n)とは (−)nµµ̂(−)nν ν̂を表し、Cµν
n はグラスマンの変数である。

この理論の超対称不変性
それではここで先に導入した変数の間に成り立つ関係式を求めよう。先に導入した作

用と変換の式に対して、超対称変換の下で不変になるように要請する。つまり理論の全
作用 Sf + Sgが超対称変換の下で不変になるという条件を課す:

δUSf + δψSf + δUSg = 0 (129)

なおここで記号として δU は続く作用に対してゲージ場の変換 (127) 式を加えたもの
で、δψはフェルミ場の変換 (128) 式を加えたものを表すことにする。Sgにはフェルミ場
は含まれていないので δψSgは考える必要はない。
通常、理論が超対称不変というときは経路積分の測度 (measure)の変化も含めて作用

の変化を考える。しかしこの理論ではそれよりも強い条件として、作用の変化が 0にな
ることと積分の測度の変化が 0になることを分けて要請する。ただ後で見るように作用
の変化が 0になることを要請すると、そこから得られる条件で積分の測度の変化は 0に
なることが示せるのである。
それでは、まず (129)式の条件から得られる関係式を求めてみよう。その後に、積分

の測度が不変であることを確認する。
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さて、条件式 (129)式なのだが、これは左辺第一項と残りの部分を分けてそれぞれが 0

だという条件になる。つまり δUSf = 0と δUSg + δψSf = 0である。なぜならば、ゲージ
場の変換式 (127) 式とフェルミオンの作用 (126) 式を思い出してみると、

Sf =
∑

n,ρ

bρ(n(ρ)) tr
{
ψn(ρ)Un(ρ),ρψn(ρ)+ρ̂U

†
n(ρ),ρ − ψn(ρ)+ρ̂U

†
n(ρ),ρψn(ρ)Un(ρ),ρ

}
(126)

と
δUn(µ),µ =

∑

ρ

{
α
ρ(n)
n(µ),µξ

ρ(n)
n(µ)Un(µ),µ + Un(µ),µα

ρ(n)
n(µ)+µ̂,µξ

ρ(n)
n(µ)+µ̂

}
(127)

である。ξµn = Un,µψn+µ̂U
†
n,µに注意すれば、δUSf は ψに関して 3次であることがわかる

だろう。
それに対して残りの 2項 δψSf + δUSgは共に ψについての 1次になっている。

Sf =
∑

n,ρ

bρ(n(ρ)) tr
{
ψn(ρ)Un(ρ),ρψn(ρ)+ρ̂U

†
n(ρ),ρ − ψn(ρ)+ρ̂U

†
n(ρ),ρψn(ρ)Un(ρ),ρ

}
(126)

と
δψn =

∑

0<µ<ν

C(µν)(n)
n

[
Un,(µν)(n) − Un,(νµ)(n)

]
(128)

から δψSf が ψについて 1次で、

Sg = −β
∑

n,µν

tr (Un(µν),µν + Un(µν),νµ) (126)

δUn(µ),µ =
∑

ρ

{
α
ρ(n)
n(µ),µξ

ρ(n)
n(µ)Un(µ),µ + Un(µ),µα

ρ(n)
n(µ)+µ̂,µξ

ρ(n)
n(µ)+µ̂

}
(127)

で δUSgも ψについて 1次。
つまり ψの次数ごとに 0になるべきで、そのため条件 (129) 式は

δUSf = 0 (130)

δUSg + δψSf = 0 (131)

の 2つに分解できる。

条件 δUSf = 0について
この条件から出てくる変数間の関係式は、

bρ(n)αµn,ρ + bµ(n)αρn,µ = 0

で、つまり αに対する拘束条件は

αµn,ν = −bµ(n)

bν(n)
ανn,µ (132)
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である。なおこの条件式から、αの対角成分は消えることがわかる。

αρn,ρ = 0 (133)

条件 δS = δUSg + δψSf = 0について
この条件は 2種類のグラフについて考える必要がある。つまり µ, ν, ρが 3つの方向を

示す場合と 2つの方向を示す場合である。後者はつまり ρ̂が µ̂もしくは ν̂と等しい場合
ということ。図 20を参照せよ。

PSfrag replacements

µ̂µ̂

ν̂
ν̂

ρ̂

ρ̂

ψ

ψ

図 20: 2種類のグラフ

これら 2種類のグラフから、次の条件が出てくる。

bρ(n)C(µν)(n)
n = β

[
(−)nµαρn,µ − (−)nναρn,ν

]

bρ(n)C
(ν−ρ)
n+ρ̂ + bν(n)C

(−νρ)
n+ν̂ = −β

(
α−ρn+ρ̂,ν − α−νn+ν̂,ρ

) (134)

経路積分の測度が不変であることについて
このことはそれほど明らかなものではない。そこでU と ψを変化させることを次のよ

うな 2段階に分けて考えてみよう。なお記号として

δU = F (α, ψ, U)

を導入しておく。そして U と ψを変化させることだが、
(
U

ψ

)
(B)−−→

(
U + F (α, ψ − δψ, U)

ψ

)
(A)−−→

(
U + F (α, ψ, U)

ψ + δψ

)
(135)

という 2段階に分けて考える。こうすると、始めの矢印と 2つ目の矢印でともに変換の
ヤコビアンが 1であることが示せるのである。

2つ目の矢印の方が易しいので先に扱う。これは
(A)フェルミオン変数のみが変化した場合:

U ′n,µ = Un,µ

ψ′n = ψn + Cµν
n (Un,µν − Un,νµ)

(136)
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である。これは単純に JA = 1である。
問題は始めの矢印の方だが、こちらは

(B) ゲージ場のみを変化させるときで :

U ′n,µ = eαn,µ·ξ
′
nUn,µe

αn+µ̂,µ·ξ′n+µ̂

ψ′n = ψn
(137)

ここでαn,µ · ξn = αρn,µξ
ρ
n と ξ′ρn = Un,ρ

{
ψ′n+ρ̂ − Cµν

n+ρ̂ (Un+ρ̂,µν − Un+ρ̂,νµ)
}
U †n,ρ とした。こ

れはやや複雑に見えるが、まず F (α, ψ − δψ, U)の δψの部分は変換パラメーターの 2次
になっているので考えなくてよくて、そして残った部分の変換でのヤコビアンを計算す
ると、α · ξが純虚数 (pure imaginary)でさらにUn,µを含まない場合に、ヤコビアンは 1

になる。この「 α · ξがUn,µを含まない」というのはつまり

αµn,µ = α−µn+µ̂,µ = 0 (138)

という場合である。この条件は、もし全作用が超対称変換の下で不変であった場合には
自動的に満たされる。

よって、通常考える超対称不変性 (作用と測度の変化が合わせて0になる)と比べれば
条件は少し厳しいが、とにかく全作用が超対称不変であるべしという要求によって、条
件 (132) 式と (134) 式がつき、これによって理論が超対称不変であることが保証される
のである。
以上で one-cell模型での超対称不変性を確認し終えた。

cellが複数集まった模型 (Multi-cell model)

One-cell模型で超対称不変なものが得られれば、それを全空間に拡張することも可能
であろう。文献 [38][39]では次のような拡張を提案している。

PSfrag replacements

Blue-cell

Red-cell

図 21: Multi-cell model

イチマツ模様にBlue unitとRed unitを配置させて、
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(B)Blue unit では one-cell模型が存在する。
(R)Red unit では異なる one-cell模型が存在している。
(Bl)Blankでは cell模型は存在しない。

と考えることにする。(図 21参照)

この理論の全作用とは、blue cellと red cellをすべて足し上げたものである。
場の観点では、

(i) リンク変数 (ゲージ場)は blue cellにも red cellにも存在する。

(ii) plaqueteは blue cellと red cellのみに存在し、blank unitには存在しない。

(iii) サイト変数 (fermi場)は blue cellと red cellの境界サイトに存在する11。

という特徴がある。

11フェルミ場は blue cellのフェルミオンと red cellのフェルミオンとで dualな関係を持つことになる。
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6 Lüscher Fermions

前節まででみたダブラー回避の試み (Wilson fermion,staggerd fermion)は早くから研
究されていたものである。しかし 4 節のWilson fermionは質量項の導入によってカイラ
ル対称性を犠牲にしてしまうし、5節の staggerd fermionは現われうるダブラーの分も新
たなフレイバーとしてその自由度を分配し、結果として通常のカイラル対称性とは違っ
た扱いをしなくてはならない。そのため格子上で通常のカイラル対称性を実現すること
は、難しいように見えた。
その後、3 節でみたNielsen-Ninomiya定理によって、格子上でカイラル対称性を実現

することは不可能 (no-go!)であることが示されてしまった。このNielsen-Ninomiya定理
(no-go定理)の衝撃は大きく、格子上でカイラル対称性:

γ5D +Dγ5 = 0 (139)

を実現することは半ば諦められていた。
ところが事態は 1998年になって動き始める。Lüscherは論文 [20]において、(139) 式

のカイラル対称性を
γ5D +Dγ5 = aDγ5D (140)

に置き換えると、格子サイズ aを 0に近づけるにつれて通常のカイラル対称性 (139) 式
に戻る上に、理論がすっきりと書けるということを指摘したのである。
また (140)式を満たすようなDは同じ 1998年すでに見つかっていて、それにより格子

上のカイラル対称性 (通常のカイラル対称性に格子サイズに比例する修正が加わったも
の)についていろいろと議論されるようになった。この (140) 式の対称性を格子上のカイ
ラル対称性、もしくはLüscher対称性と呼び、(140) 式を満たすフェルミオンをLüscher

fermionと呼ぶこともある12。

6.1 Lüscher対称性
1982年、GinspargとWilsonはカイラル対称性を持つ理論からブロックスピン変換で

移り変われる理論のDirac演算子に対して、どのような関係式が成り立つかを導いた。文
献 [16]の論文である。Ginspargらが行った考察については 6.2節で確認する。
そのGinspargとWilsonの導いた式の最も単純なものが前述の (140)式: γ5D+Dγ5 =

aDγ5D であるが、これは格子上で成立する修正されたカイラル対称性だと考えることが
できる。

12Lüscher対称性と呼ばれることは多くなってきているが、単に Ginsparg-Wilson 関係式と呼ばれるこ
とも多い。
また Lüscher fermionと呼ばれることはそれほど多くない。Ginsparg-Wilson関係式を満たす Dirac作

用素の構成法にちなんで domain wall fermionや overlap fermion などと呼ばれることのほうが多い。し
かしこの論文では、Ginsparg-Wilson関係式を満たすDirac作用素によって表されるフェルミオンを、ま
とめて Lüscher fermionと呼ぶことにする。
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NielsenとNinomiyaの定理は次の 4つの性質を満たすDirac演算子が格子上には存在
できないということを意味している:

(i) D̃(p)は運動量 pµの周期 2π/aの解析関数である。
(ii) カットオフより十分に小さな運動量に対しては D̃(p) = iγµpµとなる。

(iii) D̃(p)はあらゆる 0でない運動量 (mod 2π/a)に対して、逆が存在 (in-

vertible)している。
(iv) Dは γ5と反交換である。

このうち (i)∼(iii)はDが格子上で定義されたDirac演算子で、さらにWeyl fermionを
表現しえるものを考えるためには外せない条件であろう13。そこで 4つ目の (iv)に注目
し、これを

γ5D +Dγ5 = aDγ5D (140)

に置き換えることをLüscherは提案した。そしてこの関係式を満たすDirac演算子はす
でに見つかっていたのである。
その演算子は文献 [17]で Neubergerによって発見されていたものである14。余次元を

1つ導入して、その余次元方向に階段型の質量項を用意すると、右巻きのフェルミオン
と左巻きのフェルミオンは偏在するようになる。その性質が格子の理論でも成立する様
子をKaplanが文献 [19]の論文で示し、そこから domain wall fermionの考え方が生まれ
た。NeubergerらはKaplanの考えをさらに押し進め、カイラルフェルミオンを表しうる
Dirac演算子を構成した。
その演算子の形は自由フェルミオンに対して

D = 1
a
{1− A(A†A)−1/2} ,
A = 1− aDw

(141)

というものである。ただしDwとはWilsonが提案したDirac演算子で、具体的には

Dw = iγµ
(
4µ +4∗µ

)

2
− a

2
4∗µ4µ (142)

である15。
Lüscher対称性:

γ5D +Dγ5 = aDγ5D (140)

13条件に現われている D̃(P )とは、格子上の Dirac演算子Dが並進変換の下で不変だとして、

Deipxu = D̃(p)eipxu

に現われる 4× 4行列。(上の式の uは constant Dirac spinor)
14続く論文 [18]でそれが Ginsparg-Wilson関係式の一つの形を満たしていることが指摘された。
154µ や4∗µ の定義は 7ページ参照
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は 6.2節で示すGinsparg-Wilson関係式 (157)式の一番単純なものであるが、カイラル対
称性 (139)式に格子間隔に比例する補正項を加えようと思ったらほとんど変更の余地は
ない形である。格子間隔が長さの次元を持っていて、両辺の次元を合わせようと思えば
(140)式がもっともであることがわかるだろう16。
しかしそのもっともな形の補正項をうまく成立させる Dirac演算子はなかなか見つか

らなかった。たとえばWilsonの提案したDirac演算子 (142)式だった場合は、

γ5Dw +Dwγ5 = −a4∗µγ54µ

aDwγ5Dw = −a
4

(
4µγ54µ + 24∗µγ54µ +4∗µγ54∗µ

)
+ a2

4
4∗µ4µγ54∗µ4µ

(143)

であり、近い形といえなくもないが、γ5Dw +Dwγ5 = aDwγ5Dwとはなっていない。
ところが (141)式のDirac演算子を用いると、γ5D+Dγ5 = aDγ5Dがちゃんと成立し

ているのである。具体的にみてみると、

γ5D +Dγ5 =
1

a

{
2γ5 − A(A†A)−1/2γ5 − γ5A(A†A)−1/2

}
(144)

aDγ5D =
1

a

{
1− A(A†A)−1/2

}
γ5

{
1− A(A†A)−1/2

}

=
1

a
{γ5 + A(A†A)−1/2γ5A(A†A)−1/2

− A(A†A)−1/2γ5 − γ5A(A†A)−1/2}

(145)

ここでAの定義を思い出すと

Aγ5 = γ5A
†

A†A = AA†
(146)

が成立しているので、A(A†A)−1/2γ5A(A†A)−1/2 = γ5 であり、

aDγ5D =
1

a

{
2γ5 − A(A†A)−1/2γ5 − γ5A(A†A)−1/2

}
= γ5D +Dγ5

となっている。つまり (140)式が成立しているのである。

なおここでわかる通り、自由フェルミオンに対するLüscher対称性の解:

D =
1

a
{1− A(A†A)−1/2} (141)

に現われるAは、 A = 1− aDw でなくとも (146)式の性質を満たすものであれば問題は
ない。
さらにこの Lüscher対称性の便利なところは、このDirac演算子の具体的な形には何

ら影響を受けないのである。それらについては 6.3節以降で論じることにする。
16なお Lüscher対称性の代数的な改良については文献 [46][47]などがある

55



6.2 Ginsparg-Wilson関係式
前節では格子上でのカイラル対称性の現われ方として、Lüscher対称性と、その式を満

たす解がありうることを取り上げた。このLüscher対称性の便利なところを論じる前に、
そのきっかけとも言えるGinspargとWilsonの関係式について振り返っておこう。前節
のLüscher対称性の (140)式は、この節で扱うGinsparg-Wilson関係式の特殊な場合であ
る。

GinspargとWilsonは、カイラル対称性を保つ作用があったとき、そこからブロック
スピン変換で移り変われる理論の Dirac演算子に対して、元々の作用がカイラル不変で
あることから導かれる制約がなにか付くだろうかということを考えた。文献 [16]の論文
である。
まずカイラル不変な作用AI(φ, φ̄)を考える。それが満たすべき性質は、

AI(e
iεγ5φ, φ̄eiεγ5) = AI(φ, φ̄) (147)

この作用AI(φ, φ̄)は連続の作用でも構わない。大事なのは (147)式の性質のみである17。
ここでブロックスピン変換後の場を ψと書くことにして、新しい作用A(ψ, ψ̄)を次の

ように定義する:

e−A(ψ,ψ̄) =

∫

φφ̄

exp
[
−(ψ̄n − φ̄n)αnm(ψm − φm)− AI(φ, φ̄)

]
(148)

スピノールの添字については和を取るものとし、n,mは空間の添字である。また使って
いるメトリックはユークリッド的とする。
この (148)式に現われる φnや φ̄nは、元のAI(φ, φ̄)の自由度から新たな格子ブロック

の各サイトについてなにかしらの決まった方法で構成されたブロック変数である。行列
αは自明でない γ行列の依存性を持っているが、(148)式の変換が特異でない fixed point

actionを認めるためには、カイラル変換で不変ではない部分をもつ必要がある。
以下では最も単純なケースとして行列 αがDirac空間において単位行列に比例する場

合のみを考えることにする。
ここでやりたいことは、元の AI(φ, φ̄)がカイラル不変であることに起因するA(ψ, ψ̄)

の性質を見付けるということである。そこでこの A(ψ, ψ̄)をカイラル変換したものを表
してみると、globalカイラル変換の下では、

exp
[
−A(e−iεγ5ψ, ψ̄e−iεγ5)

]
=
∫
φφ̄

exp
[
−(ψ̄ne

−iεγ5 − φ̄n)αnm(e−iεγ5ψm − φm)− AI(φ, φ̄)
]

=
∫
φφ̄

exp
[
−(ψ̄n − φ̄n)e−iεγ5αnme

−iεγ5(ψm − φm)− AI(φ, φ̄)
]

(149)

である。
なお上式の 1行目から 2行目では φ→ e−iεγ5φ, φ̄→ φ̄e−iεγ5 の置き換えをし、AI(φ, φ̄)

に対して (147)式の性質を利用している。またここではすでに上記の置き換えの下でヤコ
17ここでの φはフェルミオンであってスカラー場とは関係ない。
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ビアンが 1であるとしてしまっている。これが気になるならば、右辺にヤコビアンの変
化分として δJなどといった項を付け加えておくとよい。ただし、その項は後に (156) 式
を導く時点で、δJ = 0だということが判明する。
もしAI(φ, φ̄)がフェルミオンの quadraticならば、A(ψ, ψ̄)もそうであって、

A(ψ, ψ̄) ≡ ψ̄nKnmψm (150)

と書くことができる。
これを利用して (149)式の各辺を εの 1次まで展開する。まず

−A(e−iεγ5ψ, ψ̄e−iεγ5) = −ψ̄ne−iεγ5Kn,me
−iεγ5ψm

= −ψ̄nKnmψm + iεψ̄n {γ5, Knm}ψm +O(ε2)

であるので

((149)式の左辺) = exp
[
−A(e−iεγ5ψ, ψ̄e−iεγ5)

]

= exp
[
−A(ψ, ψ̄)

]
exp

[
iεψ̄{γ5, K}ψ

]

= e−A(ψ,ψ̄)
[
1 + iεψ̄{γ5, K}ψ

]
(151)

同様に右辺は、
e−iεγ5αnme

−iεγ5 = (1− iεγ5)αnm(1− iεγ5) +O(ε2)

= αnm − iε {γ5, αnm}+O(ε2)

より

(右辺) =

∫

φφ̄

exp
[
−(ψ̄n − φ̄n)e−iεγ5αnme

−iεγ5(ψm − φm)− AI(φ, φ̄)
]

=

∫

φφ̄

exp
[
−(ψ̄ − φ̄)α(ψ − φ)− AI(φ, φ̄)

]
exp

[
+iε(ψ̄ − φ̄){γ5, α}(ψ − φ)

]

=

∫

φφ̄

[
1 + iε(ψ̄ − φ̄){γ5, α}(ψ − φ)

]
exp

[
−(ψ̄ − φ̄)α(ψ − φ)− AI(φ, φ̄)

]

(152)

=

[
1− iε ∂

∂ψ
α−1{γ5, α}α−1 ∂

∂ψ̄

]∫

φφ̄

exp
[
−(ψ̄ − φ̄)α(ψ − φ)− AI(φ, φ̄)

]

(153)

=

[
1− iε ∂

∂ψ
{γ5, α

−1} ∂
∂ψ̄

]
e−A(ψ,ψ̄) (154)

となる。ここで (152)式から (153) 式にかけては、

∂

∂ψ̄
e−(ψ̄−φ̄)α(ψ−φ) = −α(ψ − φ)e−(ψ̄−φ̄)α(ψ−φ)

∂

∂ψ
e−(ψ̄−φ̄)α(ψ−φ) = (ψ̄ − φ̄)αe−(ψ̄−φ̄)α(ψ−φ)
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といった関係を用いて変形する。ただし、よく注意しなければならないのは、余分に
−iε trα−1{γ5, α}という項が存在することであろう。この項が存在することは (153)式を
ちゃんと展開して (152)式に戻るかどうかを確かめてみればわかる:

−iε ∂
∂ψ

α−1{γ5, α}α−1 ∂

∂ψ̄
exp

[
−(ψ̄ − φ̄)α(ψ − φ)− AI(φ, φ̄)

]

=iε
∂

∂ψ
α−1{γ5, α}(ψ − φ) exp

[
−(ψ̄ − φ̄)α(ψ − φ)− AI(φ, φ̄)

]

=iε
[
(ψ̄ − φ̄){γ5, α}(ψ − φ) + trα−1{γ5, α}

]
e−(ψ̄−φ̄)α(ψ−φ)−AI (φ,φ̄)

もちろん、いま行っている計算では tr γ5 = 0より、このトレースの項は意味を持たな
い。ただ、この項はGinsparg-Wilson関係式と同様の等式を別の対称性に対して構成し
ようとした場合には、無視できない場合もある。その例としては、Ginsparg-Wilson関
係式を超対称性に対して構成しようとした試みで、文献 [36],[37]などがあり、6.4 節で紹
介する。
カイラル変換に対するGinsparg-Wilson関係式の導出を続けよう。(153)式から (154)

式への変形は、e−A(ψ,ψ̄)の定義 (148)式を思い出せば明らかだろう。
ここで次の式

Kψe−ψ̄Kψ = − ∂

∂ψ̄
e−ψ̄Kψ

ψ̄Ke−ψ̄Kψ =
∂

∂ψ
e−ψ̄Kψ

(155)

を用いると、(154)式はさらに変形することができて、(151)式と (154)式を等号で結ん
で εの 1次の項に注目すると、

iεψ̄{γ5, K}ψe−ψ̄Kψ = iεψ̄K{γ5, α
−1}Kψe−ψ̄Kψ (156)

が成立している。つまり、
{γ5, K} = K{γ5, α

−1}K
であり、αをDirac空間においては単位行列としていることを思い出すと、

{γ5, K} = K{γ5, α
−1}K = 2Kγ5α

−1K

or

{γ5, D} = 2Dγ5α
−1D

(157)

となっているのである。
この関係式が、カイラル不変な理論から出発してブロックスピン変換で移り変われる

理論の特徴であり、求めたかった式である。元々のカイラル不変な作用 AIは (147)式の
性質さえ満たしていればよいものであり、つまりは連続理論の作用でも問題はないので
ある。そのため、連続のカイラル不変な作用とブロックスピン変換で結ばれる理論に対
する制約として、(157)式が得られたことになる。
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形を見れば明らかなように、(157)式においてα−1 = a
2
とすれば、Lüscher対称性の式

(140)式が得られる。
γ5D +Dγ5 = aDγ5D (140)

6.3 Lüscher fermionの有効性
それではこの Lüscher対称性を満たすフェルミオンにはどんないいところがあるかに

ついて考えてみよう。しばらくは文献 [20]にならって話を進めることにする。

アノマリーの計算
まずは Lüscher対称性の (140)式から出てくるアノマリーを計算してみる。すると通

常のWard恒等式のアノマリーになっていて、そのことから格子上におけるカイラル対
称性の形が、この Lüscher対称性の式であると解釈するのである。

新しい対称性に関連した場の無限小変化は、

δψ = γ5(1− 1

2
aD)ψ

δψ̄ = ψ̄(1− 1

2
aD)γ5

(158)

である。この変換によって、自由フェルミオンの作用:

SF = a4
∑

x

ψ̄Dψ

が不変であることは容易に示せる。具体的に代入してみれば一目瞭然で、

δSF = a4
∑

x

(δψ̄Dψ + ψ̄Dδψ)

= a4
∑

x

[
ψ̄(1− 1

2
aD)γ5Dψ + ψ̄Dγ5(1− 1

2
aD)ψ

]

= a4
∑

x

[
ψ̄γ5Dψ + ψ̄Dγ5ψ − ψ̄aDγ5Dψ

]

= 0

である。ここではDの具体的な形は使っていない。
Lüscher対称性 (140)式の無限小変換として、(158)式とせず、

δψ = γ5(1− aD)ψ

δψ̄ = ψ̄γ5

(159)
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のようにすることもできる。これでももちろん、上のSF を不変に保つことができる。し
かしこの式では、(δψ)†γ0が δψ̄になっていない。無限小変換として (158)式の形を選ぶ
のは δψ̄ = (δψ)†γ0を期待するからであり、このことを要求しないならば、(159)式のよ
うにしても問題はない。(以下の議論も問題なく適用できる)

ここで興味があるのは期待値:

〈
O
〉
F

=

∫ ∏

x

dψ(x)dψ̄(x)Oe−SF (160)

の対称性に関する性質である。ただしOはフェルミオン場の任意の積である。
ψ, ψ̄の変換を

ψ → ψ + εδψ ,

ψ̄ → ψ̄ + εδψ̄
(161)

と表して、εの 1次までを取る。関係式:

log(detX) = tr (logX)

に注意して積分測度の変化を計算すれば、(158)式にしても (159)式にしても

det(1 + εγ5 − aεγ5D) = exp
[

tr
{

log(1 + εγ5 − aεγ5D)
}]

= exp
[
ε tr
{
γ5 − aγ5D

}]

= exp
[
−aε tr

{
γ5D

}]

= −aε tr
(
γ5D

)

など18より、 〈
δO
〉
F

= −a tr (γ5D)
〈
O
〉
F

(162)

となる。ここでの最後のトレースはフェルミ場の空間でのトレース。
先に考えた自由フェルミオンのD :(141)式の場合は tr が消えて、対称性は exactであ

る。

ここで次の式に着目する。

a(z −D)γ5(z −D) = z(2− az)γ5 − (1− az){(z −D)γ5 + γ5(z −D)}

この式はGinsperg-Wilson関係式が成立する場合に成立する。この式の右から (z−D)−1

を掛けて tr をとると、 tr γ5 = 0に注意しつつ、

−a tr (Dγ5) = z(2− az) tr {γ5(z −D)−1} − (1− az) tr {(z −D)γ5(z −D)−1}
18ここの途中計算は (158)式か (159)式かによって異なるが、結果である (162) 式は共通である。
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tr の性質から tr {(z −D)γ5(z −D)−1} = tr {(z −D)−1(z −D)γ5} = 0

よって、
−a tr (Dγ5) = z(2− az) tr {γ5(z −D)−1} (163)

この式の両辺を z(2− az)で割って、原点まわりの小さな円周で積分する。
∮

dz

2πi

−a
z(2− az) tr (Dγ5) =

∮
dz

2πi
tr {γ5(z −D)−1}

より左辺を計算して、

−a
2

tr (Dγ5) =

∮
dz

2πi
tr {γ5(z −D)−1}

Dの 0モードの部分空間への射影演算子P0を

P0 =

∮
dz

2πi
(z −D)−1

と表記すると、

−a tr (Dγ5) = 2 tr (γ5P0) (164)

となっている。
P0はDの 0モードを与える演算子で、γ5はその 0モードに対して、右巻きと左巻き

に応じて+1か−1を対応させる演算子だと考えることができる。そのため tr (γ5P0)は、
Dに含まれる右巻き粒子数と左巻き粒子数の差を与える。
フェルミオンのフレイバー数についても考慮に入れると (164)式より、

−a tr (Dγ5) = 2Nf × index(D) (165)

(Nf はフェルミオンのフレイバー数)

である。
この式と

〈
δO
〉
F

= −a tr {γ5D}
〈
O
〉
F
を合わせると、Ward恒等式のアノマリーになっ

ている。 〈
δO
〉
F

= 2Nf × index(D)×
〈
O
〉
F

このことから、Lüscherは (140)式を格子における厳密なカイラル対称性の式であると
主張したのである。

カイラル不変性を保つYukawa相互作用の構成
この Lüscher対称性の有効性の大事な点として、相互作用を含む理論が作りやすいと

いう点を忘れることはできない。ここでは相互作用としてフェルミオンとスカラー場の
結合を考える。
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方針は単純で、ψだけではカイラル不変とならないが、うまく補助場 χ を導入して、
ψ + χの組み合せで通常のカイラル不変性のようにするのである。
まず自由フェルミオンの作用から話を始める。自由フェルミオンの作用として、

SF = a4
∑

x

{ψ̄Dψ − (2/a)χ̄χ} (166)

を考える。ここで現われた χ̄, χが補助場であり、変換性はそれぞれ

δψ = γ5(1− 1

2
aD)ψ + γ5χ

δψ̄ = ψ̄(1− 1

2
aD)γ5 + χ̄γ5

(167)

δχ = γ5
1

2
aDψ

δχ̄ = ψ̄
1

2
aDγ5

(168)

であるとする。なおこの変換の下で、上の (166)式の SF は不変になっている。具体的に
代入すれば明らかで、

δSF = a4
∑

x

{δψ̄Dψ + ψ̄Dδψ − (2/a)δχ̄χ− (2/a)χ̄δχ}

= a4
∑

x

{δψ̄Dψ + ψ̄Dδψ − ψ̄Dγ5χ− χ̄γ5Dψ}

= a4
∑

x

{
ψ̄(1− 1

2
aD)γ5Dψ + ψ̄Dγ5(1− 1

2
aD)ψ

}
= 0

これらを使ってカイラル不変性を保った相互作用項をつくる。
これら (167)式と (168)式を組み合わせれば、

δ(ψ + χ) = γ5(ψ + χ)

δ(ψ̄ + χ̄) = (ψ̄ + χ̄)γ5

(169)

となっているのがわかるだろう。つまり、ψ + χ という組み合わせは、通常の意味での
カイラル不変性を持つということである。
そのことを利用すると、格子上の複素スカラー場を φと表記して、カイラル不変な

Yukawa相互作用項は、

Sint = a4
∑

x

g0(ψ̄ + χ̄)

{
1

2
(1− γ5)φ+

1

2
(1 + γ5)φ∗

}
(ψ + χ) (170)

とすることができる。
以上で格子上でカイラル不変な相互作用項をつくることができた。

62



このやり方で大事なところは、ψ + χの組み合わせで通常のカイラル不変になるよう
に、補助場を導入するということである。ここの説明でははじめに (166)式を導入し、同
時に (167)式と (168)式を導入したが、考え方の順序としてはむしろ逆である。つまり、
(169)式を満たすように変換性 (167)式と (168)式を導入し、その変換の下で不変になる
ように、作用 SF を構成する…という手順である。

Lüscher fermionにおけるダブラーについて
Lüscher fermionではダブラーをどう扱っているのだろうか。そのことを少し考えてみ

よう。
具体的に (141)式のDirac演算子のフーリエ変換を考えてみよう。

D =
1

a
{1− A(A†A)−1/2} , A = 1− aDw (141)

であったので、p̃µ = 1
a

sin apµと p̂µ = 2
a

sin apµ
2
という表記法を用いて

aD̃(p) = 1−
{

1− 1

2
a2p̂2

µ − iaγµp̃µ
}{

1 + a2p̂2
µ − p̃µp̃ν +

a4

4
p̂2
µp̂

2
ν

}−1/2

(171)

と書ける。これはもちろん a→ 0でD → iγµpµを実現している。
そして pµ = 0の場合には p̃µ = 0かつ p̂µ = 0であり、D̃(p) = 0と粒子を表しているの

に対して、ダブラーになりうる pµ = ±π/aに対しては p̃µ = 0でも p̂µ 6= 0より補正が加
わって D̃(p) 6= 0と粒子ではなくなっている。
つまり基本的にはLüscher fermionでもダブラーに質量を与えるような補正項を用いて、

ダブラーを粒子ではないようにしている。ただその補正項の入れ方が、Wilson fermion

などとは違っていて、Dirac演算子が特定の関係式 (つまり Lüscher対称性の式)を満た
すようにしているのである。

そのようにLüscher fermionが単に特殊な質量項の入れ方をしただけだとすると、Wilson

fermionと比較してなにが優れているのだろうか。少なくとも実際に数値シミュレーショ
ンをしようと思えば、このやり方のDirac 演算子の形はWilson fermionの場合よりも複
雑である。Wilson fermionの式で計算することに致命的な問題があるわけでもない。
それでもなおLüscher fermionが注目を集めた理由は、これが γ5D+Dγ5 = aDγ5Dの

関係式を満たすということに尽きる。
この関係式を満たすDに対しては、この小節のはじめに述べたようにアノマリーが正

しく求められることや相互作用を含む理論が構成しやすいという利点が得られる。また
Ginsparg-Wilson関係式は 6.2節でも見た通り、カイラル不変な連続理論から出発してブ
ロックスピン変換で移行できる理論のDirac演算子に対して成立する関係である。ブロッ
クスピン変換は繰り込み群を考えたり、数値計算で連続極限を考えたりするときに重要
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な変換である。そのためGinsparg-Wilson関係式を満たしているDirac演算子の方が、よ
り性質がいいものだといえるだろう。
格子上でフェルミオンを考える際、カイラル対称性を実現するのは難しい。Dirac演算

子の方を “もっともらしく”考えると、カイラル対称性は壊れてしまう。そこでどうせ壊
れる対称性ならばせめて都合がいいような壊れ方をさせたいものであり、その都合のい
い壊れ方として Lüscher対称性があるのだと考えることができる。この壊し方ならば少
なくともブロックスピン変換を続けることで確実にカイラル不変な連続理論に行き着く
ことが保証されている。

6.4 超対称性への拡張例: 超対称性でのGinsparg-Wilson関係式
カイラル対称性を格子上で表そうとしたときの補正項ともいうべきものが、Lüscher対

称性の式から得られた。ではそれと同様の考え方を超対称性に対して適用したらどうだ
ろうか。超対称性を格子で表す際の補正項が得られるのではないか。

6.2節でも少し指摘したが、超対称性に対してGinsparg-Wilson関係式に相当するもの
を導出することは可能である。超対称不変な理論から出発してブロックスピン変換で行
きつくことができる理論を考え、その運動項に成り立つ関係式を求めてみよう。ここで
は計算として重複する部分も多いが、改めてGinsparg-Wilson関係式の超対称性版とい
うべきものを導出してみる。なおこのやり方は文献 [36]の論文に依るものである。

まず超対称変換を定めておかねばならないが、それは 2つの chiral-multiplet Φj =

(φj, ψj, Fj)
T , j = 1, 2に対して、連続理論で

δεΦj = Q(ε, ε̄)Φj

δεΦ̄j = Φ̄jQ̄(ε, ε̄)
(172)

と定義されるとする。なお時空はユークリッド的とする。
連続の理論から出発し、格子の理論へブロックスピン変換を行うことを考える。その

ブロックスピン変換はブロックスピン関数 fn(x) = f(x− n)を用いて、

Φj ∼
∫
dxfn(x)Φ(x) ≡ 〈fn,Φ〉

Φ̄j ∼
∫
dxfn(x)Φ̄(x) ≡ 〈fn, Φ̄〉

(173)

と表される。この連続の chiral-multipletsによる作用をAI(Φ, Φ̄)と表記し、この作用は
超対称性のもとで不変であるとする。格子上の chiral-multipletsをΨn、それによる作用
をA(Ψn, Ψ̄n)と表記して、

e−A(Ψ,Ψ̄) =

∫

ΦΦ̄

exp
[
−(Ψ̄n − Φ̄n)αnm(Ψm − Φm)− AI(Φ, Φ̄)

]
(174)
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である。ここで αnmはmultiplet Ψnにかかる行列で、

αnm = αδnm




0 0 1

0 V 0

1 0 0


 (175)

と単純化しておく。
格子上でのナイーブな超対称性として、連続の理論から

δNε Φn =

∫
dxfn(x)δΦ(x)

= QL(
−→∇)Φn

(176)

δNε Φ̄n =

∫
dxfn(x)δΦ̄(x)

= Φ̄nQ̄L(
←−∇)

(177)

と構成する。この変換の下で先の (174)式がどのように変化するかに注目する。

e−A(Ψ′,Ψ̄′) =

∫

ΦΦ̄

exp
[
−(Ψ̄′ − Φ̄)α(Ψ′ − Φ)− AI(Φ, Φ̄)

]

=

∫

Φ′Φ̄′
exp

[
−(Ψ̄− Φ̄)eQ̄LαeQL(Ψ− Φ)− AI(Φ, Φ̄)

] (178)

であるが、ここでA(Ψ.Ψ̄)が

A(Ψ, Ψ̄) =
∑

n,m

Ψ̄nS(n,m)Ψm (179)

となっていると期待する。すると、

((178)式の左辺) = e−A(Ψ′,Ψ̄′)

= exp
[
−
∑

Ψ̄′S(n,m)Ψ
′
]

= exp
[
−A(Ψ, Ψ̄)− (δΨ̄)SΨ− Ψ̄S(δΨ)

]

= exp
[
−A(Ψ, Ψ̄)

]
exp

[
−Ψ̄(Q̄LS + SQL)Ψ

]

= exp
[
−A(Ψ, Ψ̄)

] (
1− Ψ̄(Q̄LS + SQL)Ψ

)

(180)

であり、

((178)式の右辺) =

∫

Φ′Φ̄′
exp

[
−(Ψ̄− Φ̄)eQ̄LαeQL(Ψ− Φ)− AI(Φ, Φ̄)

]

=
{

1 + δJ − strα−1(αQL + Q̄Lα)α−1S + strα−1(αQL + Q̄Lα)

−Ψ̄Sα−1(αQL + Q̄Lα)α−1SΨ
}

exp
[
−A(Ψ, Ψ̄)

]

(181)
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ここに現われる δJは、経路積分の測度の変化に関するヤコビアンから出る項である。ま
た str は super traceの略で、フェルミオンの成分には−1、ボゾンには+1を掛けて対角
成分の和をとるものとする。
さて上記 2式、(180)(181)式を比較することで、次の式を得る。

δJ = strα−1(αQL + Q̄Lα)α−1S − strα−1(αQL + Q̄Lα) (182)

Ψ̄(Q̄LS + SQL)Ψ = −Ψ̄Sα−1(αQL + Q̄Lα)α−1SΨ (183)

これらが超対称性に拡張したGinsparg-Wilson関係式である。

カイラル対称性に対して Lüscherがしたように、先のナイーブな格子上の超対称性を
拡張することができる。それは先のQL, Q̄Lの代わりに

q ≡ QL −QLα
−1S

q̄ ≡ Q̄L − Sα−1Q̄L

(184)

と修正された chargeを用いることである。このようにすれば、(178) 式の作用が不変で
あることはわかるだろう。

2次元 chiral multipletへの例
(182)式と (183)式の関係式を具体的に 2次元の chiral multipletに当てはめるとどうな

るかみてみよう。ここでの記述は文献 [36]ではなく文献 [37]の方に倣うことにする。
文献 [36]と文献 [37]の違いは、考える 2つの chiral-multipletの記述の仕方である。文

献 [36]では先に考えていたようにΦ = (φ, ψ, F )T という順序で記述しているのだが、文
献 [37]ではΦ = (φ, F ;ψ)T のように記述する。この方がいくらか見やすい結果が得られ
るのである。
さて 2つの chiral-multiplet Φj , j = 1, 2を考える。ここで成分が複素数だとして、1つ

にまとめて表してしまうことにする。つまり、

Φ = (φ1 + iφ2, F1 + iF2;χ1 + iχ2, χ
∗
1 + iχ∗2)T

≡ (φ, F ;χ, χ̄)T ,

Φ̄ = (φ∗1 − φ∗2, F ∗1 − iF ∗2 ;χ1 − iχ2, χ
∗
1 − iχ∗2)

≡ (φ∗, F ∗; χ̄†, χ†)

(185)

と表記する。N = 1の超対称変換の定義は、




δεφ = i(ε∗χ+ εχ̄)

δεF = −2ε∂z̄χ+ 2ε∗∂zχ̄

δεχ = −2ε∗∂zφ+ iεF

δεχ̄ = −2ε∂z̄φ− iε∗F

(186)
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とする。超対称不変な質量のないラグランジアンを

L = 2∂Z̄φ
∗∂zφ−

1

2
F ∗F + i(χ†∂zχ̄+ χ̄†∂z̄χ) (187)

質量項を
Lm = −m

2
(F ∗φ+ Fφ∗ + χ†χ− χ̄†χ̄) (188)

とすると、(175)式に現われる V は

V =

(
0 −1

1 0

)
(189)

である。
ナイーブな超対称性を考えると、(186)式から

QL =




0 0 iε∗ iε

0 0 −2ε∇z̄ 2ε∗∇z

−2ε∗∇z iε 0 0

−2ε∇z̄ −iε∗ 0 0


 (190)

Q̄L =




0 0 −2ε∗
←−∇z −2ε

←−∇ z̄

0 0 iε −iε∗
iε∗ 2ε

←−∇ z̄ 0 0

−iε −2ε∗
←−∇z 0 0


 (191)

が得られる。
この 2式から αQL + Q̄Lαを計算すると、

αQL + Q̄Lα = α




0 0 −2ε(TD)z̄ 2ε∗(TD)z
0 0 0 0

2ε(TD)z̄ 0 0 0

−2ε∗(TD)z̄ 0 0 0


 (192)

となる。ただし、(TD)z =
−→∇z +

←−∇z 。
超対称性に拡張したGinsparg-Wilson関係式を求めるために、格子上の作用を

A =
∑

n,m

Ψ̄nS(n,m)Ψm

S =

(
DB 0

0 DF

) (193)
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と考える。DB はボゾンに対する運動項で DF はフェルミオンに対する運動項である。
(183) 式より得られる式は、

σ3DF +DFσ3 = α−1DFσ3DF (194)

Σ3DB +DBΣ3 = α−1DBΣ3DB (195)

−2DF ∗F
B

−→∇ z̄ + iDχ̄†χ
F = α−1DF ∗F

B (TD)z̄D
χ†χ
F (196)

iDφ∗φ
B − 2

←−∇zD
χ̄†χ
F = α−1Dφ∗F

B (TD)zD
χ†χ
F (197)

である。ただし σ3 =

(
1 0

0 −1

)
, Σ3 =

(
1 0

0 −1

)
で、さらにDχ†χ

F などはDF の χ†χ

成分などを表している。
(194) 式はフェルミオンに対する元々のGinsparg-Wilsonの関係式で、(195) 式はボゾ

ンに対するGinsparg-Wilson関係式に対応するものである。超対称性によってボゾンに
もダブラー問題は発生するので、この式はそのダブラーの処理に役立つものであろう。
そして (196) 式と (197) 式はフェルミオンとボゾンの間の関係を示すものになっている。
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7 総論
Wilson fermion, staggerd fermion, Lüscher fermionという格子上でフェルミオンを表

現する 3種類の方法を確認してきた。連続極限でWeyl fermionを表す格子上のフェル
ミオンを構成すると、ダブラーは必ず現われる。3種類の方法はそれぞれのやり方でダ
ブラーの発生を回避していた。5.3節で述べた任意 d次元の staggerd fermionの場合は、
フェルミ場で表現するとWilson fermionとそっくりの質量項が導入されている。Lüscher

fermionも概ねWilson fermionと同じ様な質量項を入れていると考えられるので、これら
3種類の方法の間の違いは、ダブラーに対する質量項の入れ方の違いだといえるだろう。

Wilson fermionでは最も単純にダブラーに質量を与える項が導入されている。一番単
純な考え方なので、数値計算を行う上ではとても便利で現時点でもWilson fermionに基
づく計算は多く試みられている。ただしこれは完全にカイラル対称性を壊すような形に
なっている。

Staggerd fermionではWilson fermionとは少し違った入れ方をしていた。本論文で紹
介した任意d次元の staggerd fermionに関しては、新たに導入されたフレイバーの自由度
に関するカイラル対称性のようなものを保持するような形で、質量項が導入されていた。
なお本論文中で述べた staggerd fermionの構成法は、あくまで 1つのやり方に過ぎな

い。他の方法で自由度の分配を行ったならば5.4節で見た質量項の現われ方は違ったもの
になるだろう。本論文中で述べた構成法の利点は、連続極限でDirac-Kähler fermionに
行きつくという点である。その対応とは 5.4節で行ったように空間を単位格子とサイズ
2aの格子点に分解し、単位格子の座標 ρµがすべて 0なら 0形式、ρµのうち 1つが 1なら
1形式、2つが 1なら 2形式…というように対応づけるのである。幾何学的な意味合いは
それでよく見て取れるだろう。この staggerd fermionでは空間が離散的であることから
付く “質量項”の存在がDirac-Kähler fermionとの違いであるといえる。

Lüscher fermionは最も新しい流れであるだけに、それだけ説得力の強い質量項の入れ
方をしている。6節で見たとおり、このフェルミオンはカイラル不変な連続理論からブ
ロックスピン変換で移り変われるものだというのが特徴である。つまりブロックスピン
変換で連続理論と結び付くような形で、ダブラーの質量項が導入されている。Lüscher

fermionを用いた数値計算も最近は行われるようになっており、Dirac 演算子の形が複雑
であることから収束性はWilson fermionなどより悪くなっているものの、およそ期待通
りの結果が出ているようである。
また Lüscher対称性の式を満たすフェルミオンならば同様の性質を持っているので、

6.1節で挙げた形以外の Dirac演算子でも Lüscher fermionが記述される可能性はある。
そういった関心からの研究や、Lüscher対称性の式をより一般の形で考えたらどうなる
かといった観点の研究なども行われている。

格子を用いた超対称不変性は、現在さまざまな方法が試みられている状況で、本論文
中では十分に取り扱いきれていない。格子で超対称変換を扱おうとした際に現われる困
難というのは、概ね次の 3つが挙げられるかと思う。
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• 超対称変換の定義に微分が含まれているため、それを差分に置き換えるときの任意
性が存在していること

• フェルミオンのダブラーからスカラー場にもダブラーが発生すること

• 微分が差分に置き換わるためにライプニッツ則が成立しないこと

2つ目と 3つ目について少し確認しておこう。
スカラー場にもダブラーが発生することについてだが、理論の自由エネルギーに注目

する。まずフェルミオンの運動項を

Sf =
∑

x

ψ̄
1

2
γµ(4∗µ +4µ)ψ (198)

とする。これから得られるフェルミオンの自由エネルギーは

Ff = − ln

[∏

p

sin2 pµ

]
(199)

となる。これに対してスカラー場の運動項を通常のように考えると

Sb = −
∑

x

φ†4∗µ4µφ (200)

とするので、ここから得られる自由エネルギーは

Fb = ln

[∏

p

4 sin2 pµ
2

]
(201)

であり、先のフェルミオンの自由エネルギーとうまく打ち消し合わない。フェルミオンの
自由エネルギーとうまく打ち消し合うような自由エネルギーを得るためには、スカラー
場の作用を

S ′b = −
∑

x

φ†
{

1

2
(4∗µ +4µ)

}2

φ (202)

とする必要がある。このようにして計算すると、

F ′b = ln

[∏

p

sin2 pµ

]
(203)

である。これならば丁度フェルミオンの自由エネルギーを打ち消すことができる。ごく
簡単な議論だが、フェルミオンのダブラーにつられる形でスカラー場にもダブラーが発
生することがわかるだろう。
ライプニッツ則が成立しないことはより根本的な問題であろう。これは微分から差分

に置き換えた結果として避けることができない。超対称性がある理論を考える場合でも
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作用の中の表面項を 0とするが、これが離散的な理論ではうまくいかないのである。こ
れは具体的に見てみるとわかりやすい。仮に 1次元でサイト数 3つという場合を考えて
みよう。考えるのはA,B,Cを関数として、

∑
x ∂
∗A · B · C + A · ∂∗B · C + A · B · ∂∗C

がA,B,Cの境界値が 0のときにちゃんと消えるかどうかである。1次元でサイト数 3つ
としているので完全に書き下すことにすると、

∑

x=1,2,3

∂∗A ·B · C + A · ∂∗B · C + A ·B · ∂∗C

=
1

2

{
(A2 − A0)B1C1 + (A3 − A1)B2C2 + (A4 − A2)B3C3

+ A1(B2 − B0)C1 + A2(B3 − B1)C2 + A3(B4 −B2)C1

+ A1B1(C2 − C0) + A2B2(C3 − C1) + A3B3(C4 − C2)
}

6= 0

(204)

和を取った結果に、境界の値だけでなく中間の値も残ってしまっている。
なおこのライプニッツ則だが、3つの関数の積ABCについては今みた通りだが、2つ

の関数の積に関してならば、差分でも通常の微分と同じように成り立っていることもわ
かる。同じように 1次元 3サイトで考えると、

∑

x=1,2,3

∂∗A ·B + A · ∂∗B

=
1

2

{
(A2 − A0)B1 + (A3 − A1)B2 + (A4 − A2)B3

+ A1(B2 − B0) + A2(B3 −B1) + A3(B4 − B2)
}

=
1

2

{
−A0B1 + A4B3 − A1B0 + A3B4

}
= 0

(205)

このように中間の状態はうまく打ち消し合う。ただ残念ながら、超対称性を持つ理論を
考える場合に 3つの関数の積は 2つの関数の積と同じように登場するのである。
これらの困難は未だ解決されていない問題である。超対称性への拡張にしろ格子上で

フェルミオンを表現することにしろ、これらはまだまだ議論の余地がある分野だといえる。
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A 補足 : 発表会用に用意した投射原稿と発表内容
OHPの原稿と発表内容について記しておく。文字の位置などは多少変更されている。

またカラーペンで書き足した内容は含まれていない。四角で囲まれた部分が投射した内
容で、その次に書かれているのが口頭発表のおよその内容である。口頭の内容にやや不
正確な表現も含まれていることは御容赦願いたい。
また東工大での発表会には素粒子理論もしくは原子核理論、宇宙理論を専門とする院

生以上の人しか出席しないため、本当に基礎的な導入は省略してある。

発表時間 20分
質疑応答 5分

A.1 発表内容

修士論文発表会 :

「格子理論におけるフェルミ粒子の
表し方」

東京工業大学大学院理工学研究科
修士課程 基礎物理学専攻

山本明
(2002年 2月 14日)

「格子理論におけるフェルミ粒子の表し方」というタイトルで発表させて頂きます。
この論文では、カイラルフェルミオンを格子で表そうとするときに現われるダブラー

問題という困難な状況を回避しようとするいくつかのやり方のレビューしています。こ
のことを通して学んだことを、別のフェルミオンの理論を格子化したり、重力も含む格
子理論を構成しようとするときに、役立てようと考えています。
またカイラルフェルミオンを格子に乗せるときの困難な状況として、ダブラー問題の

他に、超対称性のある理論を格子に乗せるという問題もあります。そこで、その超対称
性を格子で表すということにも注意を向けています。
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場の理論を格子化するときの問題点

⇒ フェルミオンのダブラー問題

ダブラー問題とは…

フェルミオンを単純に格子に乗せ
ると、通常の (連続の)理論には存
在しない粒子が現われること

→ 標準模型が格子に乗せられない

⇓

ダブラー回避の試み

• Wilson fermion

• Staggerd fermion

• Lüscher fermion

• ... etc.

素粒子理論は場の量子論で記述されていますが、場の量子論は通常、摂動計算を行う
ために強結合領域では計算できないという弱点があります。クォークの結合は通常の温
度では強いですし、強結合領域で計算できないのでは困ります。そこで強い結合領域で
も計算できるようにしようという目的で格子理論は考案されました。
強結合領域で計算しようという目的では、格子理論はうまくいったのですが、フェル

ミオンを単純に格子に乗せようとすると、ダブラー問題と呼ばれる困難な状況に行き着
きます。
ダブラー問題というのは、フェルミオンを単純に格子に乗せようとすると、格子化す

る前の理論には存在しない粒子までもが、格子化した理論には存在してしまうという問
題です。このことは、標準模型 (SU(3)× SU(2)× U(1))が格子に乗せられないというこ
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とを意味します19。
標準模型が格子に乗せられないというのは困りますので、このダブラー問題を回避し

ようという試みはいくつもなされています。この論文ではそのうち有名な 3つの方法に
ついて紹介しています。

ダブラーについて (単純に格子化した場合)

Sf = a4
∑

x

ψ̄(x)(iγµ∂∗µ)ψ(x)

∂∗µ =
1

2
(4µ +4∗µ)

⇓
〈
ψ(x)ψ̄(y)

〉

=

∫ π/a

−π/a

d4p

(2π)4

iγµ{(1/a) sinapµ}
{(1/a) sinapµ}2

eip(x−y)

Nielsen-Ninomiya定理 (no-go定理)

• 「相互作用が局所的」

• 「格子が並進変換の下で不変」

• 「ハミルトニアンがエルミート」

の条件下でダブラーは避けられない

ダブラー問題についてもう少し具体的に見てみたいと思います。以下の話ではすべて
カイラルフェルミオンについて考えることにし、はじめから質量は 0であるとします。
連続の理論 (S =

∫
d4xψ̄iγµ∂µψ)を単純に格子化すると、このようになります。ここで

三角印 (4)などと表記しているのは、

19このことを詳しく説明するOHP原稿あり。「使わなかったシート」の小節を参照。
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4µf(x) =
1

a
{f(x+ aµ̂)− f(x)}

4∗µf(x) =
1

a
{f(x)− f(x− aµ̂)}

です。つまりどちらも隣り合う格子サイトとの差をとるのですが、片方は前方差分で他
方は後方差分を表しています。aと書いてあるのは格子サイズで、これらを連続極限:格
子サイズ aを 0に近付けるという極限をとった場合には、元の連続の理論に戻ります。そ
こで、これは格子化できているといえます。
このような格子理論での作用を用いて、フェルミオンの伝播関数を計算してみます。

伝播関数の極の位置が粒子を表しているので、本当に粒子数が増えているのかを確認す
るために、伝播関数を計算します。計算結果はここに書いてあります。
この伝播関数の極の位置を見てます。つまり分母が 0になる位置ですが、まず pµ = 0

の位置でこの分母は 0になります。この部分は、連続の理論でも pµ = 0で伝播関数が極
になることから、特に問題ではない期待通りの結果だといえます。しかしこの格子の伝
播関数の分母は、sin apµという形をしています。そのため、pµ = 0の位置だけでなく、
pµ = ±π/aの位置でもこの分母は 0になってしまいます。これが連続理論には存在しな
かったダブラーと呼ばれる粒子です。
このようにダブラーと呼ばれる粒子が発生してしまうというのがダブラー問題であり、

後にNielsenとNinomiyaらによって、この問題はいくつかの条件のもとでは避けられな
いということが証明されました。
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Wilson fermion

Sf = a4
∑

x

ψ̄Dwψ

Dw = iγµ
1

2
(4µ +4∗µ)−

a

2
4∗µ4µ

⇓
〈
ψ(x)ψ̄(y)

〉

=

∫ π/a

−π/a

d4p

(2π)4
eip(x−y)

× iγµ{(1/a) sinapµ} − (2/a) sin2 apµ/2

{(1/a) sinapµ}2 + {(2/a) sin2 apµ/2}2

Wilsonの対処法

−a
24∗µ4µという項を導入してダブ
ラーに質量を与える

→ カイラル対称性は壊れる

それではこのようなダブラー問題に対してどのような試みがなされているかを見てま
す。まずはじめにWilson fermionと呼ばれる方法を紹介します。この方法は、格子理論
をはじめに提案したWilsonが考案した対処法です。
このやり方では、格子のDirac演算子にWilson termと呼ばれる補正項を付け加えま

す。この補正項があると、伝播関数の計算結果にこのような sin apµ/2 という補正がくっ
つきます。
この補正項は形が、2分のapµであることに注意してください。この項は期待通りの粒子

を与える pµ = 0の位置では 0になり特に補正は与えませんが、ダブラーである pµ = π/a

の位置では 0でない値を持ちます。つまりダブラーだけに質量のような ‘重み’を与える
ことで、ダブラーが理論に現われないようにしているのです。
この補正項を付けるとダブラーは存在しなくなるのですが、補正項の形が質量項と同

じ形をしているので、カイラル対称性が全くなくなってしまうという弱点もあります。
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Staggerd fermion

格子の各サイトに、スピノールの1成分のみ
を分配する。

↓

• 有効格子サイズが2倍になってダブラー
発生しない

• 2d/2個のフェルミオンの種類が必要
(4次元なら 4個のフレイバー)

PSfrag replacements

a

a

fermion 1 (left-handed)
fermion 1 (right-handed)
fermion 2 (left-handed)
fermion 2 (right-handed)

では次に staggerd fermionと呼ばれる方法を紹介します。
通常のやり方でフェルミオンを格子に乗せようとすると格子の各サイトにスピノール

場全体を乗せてしまうのですが、この staggerd fermion という方法では、格子の各サイ
トにはスピノールの 1成分のみを乗せるようにします。
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この図の白丸のところに、スピノールの第一成分、第二成分、第三成分、…というよ
うに配置していくのです。
そうするとどんなことが起きるのかというと、ひとつのスピーノル成分にとっての有

効格子サイズが 2倍になって aから 2aになります。これはつまり、先程単純に格子化し
た場合として計算した伝播関数でいうと、

〈
ψ(x)ψ̄(y)

〉

=

∫ π/a

−π/a

d4p

(2π)4

iγµ{(1/a) sin apµ}
{(1/a) sin apµ}2

eip(x−y)

この積分範囲が−π/2aから π/2aになるようなものです。もともと伝播関数はpµ = π/a

で分母が 0になってしまうのですが、その極の位置を積分範囲から出してしまうという
効果があります。
つまり、staggerd fermionのやり方で何を目的にしているかというと、この「有効格子

サイズを 2倍にする」ということです。「有効格子サイズを 2倍にする」という目的を達
成するための手段として、「格子の各サイトにスピノールの 1成分のみを分配しようとす
る」のです。
そして、このスピノールの成分の分配を完全に行おうとすると、今度は新しくフェル

ミオンにフレイバーの自由度を導入する必要が出てきます。2次元の場合を図示してい
ますが、2次元ではスピノールは左巻きと右巻きの2成分だけです。例えばはじめに横方
向にフェルミオンの左巻き成分、右巻き成分、左巻き成分…というように分配したとし
ます。そうすると、横方向には有効格子サイズが 2倍になっているのですが、縦方向で
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は有効格子サイズが 2倍になりません。縦方向でも有効格子サイズを 2倍にするために
は、新しく別の種類のフェルミオンを用意して、右巻き、左巻き、…というように配置
しなくてはなりません。

2次元でない任意のd次元に対しても、同様に格子のサイト数とスピノールの成分数を
比較することで、2d/2個のフェルミオンが必要になることがわかります。4次元ならば、
4個のフェルミオンが必要になります。

Lüscher fermion

S = a4
∑

x

ψ̄(x)Dψ(x)

カイラル対称性 :

γ5D +Dγ5 = 0

⇓
Lüscher対称性 :

γ5D +Dγ5 = aDγ5D

(Ginsparg-Wilson 関係式)

解 :

D =
1

a

{
1− A(A†A)−1/2

}

A = 1− a
[
iγµ

1

2
(4µ +4∗µ)− a

2
4∗µ4µ

]

それではダブラー問題に対する試みの 3番目として、Lüscher fermionというものを紹
介します。これはこれまで紹介した 2つのやり方と比べると、新しいやり方であると言
えます。
このやり方では、作用に現われるDirac演算子Dに注目します。通常のカイラル対称

性は、このようにDirac演算子と γ5の反交換関係が 0になるという式で記述することが
できます。格子理論ではこの関係式が成立しないということなので、Lüscher fermionの
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考え方では、反交換関係の結果に格子サイズ aに比例する補正項を付け加えます。そう
して得られた式が Lüscher対称性もしくはGinsparg-Wilson関係式と呼ばれる関係です。
そして格子上では、この関係式が成立していると期待するわけです。このような関係

式を満たすDirac演算子はすでに発見されていました。
このような関係式が成り立っているとどんないいことがあるのかと言うと、それはま

だ未知数であると表現するのが一番正確なのでしょうが、ひとつには…

Lüscher fermion : アノマリーの計算

〈
O
〉
F

=

∫ ∏

x

dψ(x)dψ̄(x)Oe−SF

(Oはフェルミオン場の任意の積)

{
ψ → ψ + εδψ ,

ψ̄ → ψ̄ + εδψ̄




δψ = γ5(1−
1

2
aD)ψ

δψ̄ = ψ̄(1− 1

2
aD)γ5

⇓
〈
δO
〉
F

= −a tr (γ5D)
〈
O
〉
F(

−a tr (Dγ5) = 2Nf × index(D)

(Nf :フレイバー数)

)

〈
δO
〉
F

= 2Nf × index(D)

(ひとつには…)アノマリーの計算がきちんとできるということが挙げられるかと思いま
す。これは格子サイズを有限にしたままの連続極限をとる前の段階で、ちゃんとアノマ
リーの計算ができるということで、さらに結果は期待通り、カイラルアノマリーと同じ
形になります。
格子サイズが有限のままでカイラルアノマリーが出てくるということから、このLüscher

対称性は、格子上でのカイラル対称性に相当するものだと考えられています。

80






p̃µ = 1

a sin apµ

Pµ = 2
a sin

apµ
2



という表記法で

Lüscher fermion

aD̃(p) = 1−
{

1− 1

2
a2P 2

µ − iaγµp̃µ
}

×
{

1 + a2P 2
µ − p̃µp̃ν +

a4

4
P 2
µP

2
ν

}−1/2

Wilson fermion

D̃(p) = iγµp̃µ +
1

2
aP 2

µ

Staggerd fermion

D̃(p) = i(γµ ⊗ 1l)p̃µ +
1

2
a(γ5 ⊗ γµγ5)P

2
µ

Lüscher fermionでダブラーがどうなっているかを見てみます20。
伝播関数は Dirac演算子をフーリエ変換したものの逆数で与えられるので、ここで

は Dirac演算子をフーリエ変換したものを書いています。またここでは小文字の p̃µ で
1
a

sin apµを表し、大文字の PµでWilson fermionでいうところの補正項 : 2
a

sin apµ
2
を表

しています。
このLüscher fermionのDirac演算子をフーリエ変換したものは、先程お見せしたDirac

演算子の形を使っていますが、とても複雑な形をしています。しかし、pµ = 0では p̃µも
大文字のPµもどちらも 0になるのに対して、pµ = π/aでは p̃µが 0になっても、大文字の
Pµが 0にならずに補正を付け加えます。つまり、Lüscher fermionの考え方でも、Wilson

fermionと同じようにダブラーだけに質量を与えるような補正項を付け加えているのだ
と考えることができます。ただその補正項の付け加え方が Lüscher対称性と呼ばれる関
係式を満たすようになっているということが、Wilson fermionとの違いです。

20このページは発表会本番では時間の都合で省略しました。
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格子を用いた超対称性を含む理論

本論文中で紹介しているもの

• Staggerd fermionを基にした試み

• Ginsparg-Wilson関係式の超対称性版

なぜ超対称性か?

超対称性 : フェルミオンと
ボゾンの間の対称性

⇓

結合定数が統一できる
素粒子理論としてありえる対称性の最後？

(Coleman-Mandula/Haag-Lopuszanski-Sohniusの定理)

それでは格子の考え方を用いた超対称性を含む理論の話に移りたいと思います。超対
称性のある格子理論はいまもいろいろな試みが成されている話題で、この論文ではそのう
ち 2つだけを紹介しています。staggerd fermionをもとにした試みと、Ginsparg-Wilson

関係式の超対称性版を構成しようという試みの 2つです。
なぜ超対称性のある理論を考えたいのかというと、いくつか理由はあるのですが、一

番には「結合定数が統一できる」ということが挙げられるかと思います。超対称性があ
ると、電磁相互作用と弱い相互作用と強い相互作用の結合定数が高エネルギーで一致す
ると考えられています。
また、相対論的な場の理論で許される対称性はゲージ対称性などを除くと、あとは超

対称性だけであるという定理も存在します。そこで、素粒子理論として考えられる対称
性の最後のものであるという視点で興味を持つ人もいるかと思います。
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超対称性を持つ格子理論
～格子を用いた超対称Yang-Mills理論への挑戦

Sg = −β
∑

n,µν

tr (Un(µν),µν + Un(µν),νµ)

Sf =
∑

n,ρ

bρ(n(ρ)) tr
{
ψn(ρ)Un(ρ),ρψn(ρ)+ρ̂U

†
n(ρ),ρ

− ψn(ρ)+ρ̂U
†
n(ρ),ρψn(ρ)Un(ρ),ρ

}

δUn(µ),µ =
∑

ρ

{
α
ρ(n)
n(µ),µξ

ρ(n)
n(µ)Un(µ),µ

+ Un(µ),µα
ρ(n)
n(µ)+µ̂,µξ

ρ(n)
n(µ)+µ̂

}

δψn =
∑

0<µ<ν

C(µν)(n)
n

[
Un,(µν)(n) − Un,(νµ)(n)

]

n(µν) : plaquette (n, µν)の基点
n(ρ) : ρ座標に関して nρ = 0の点
ρ(n) : n+ ρ̂ か n− ρ̂ (cell内)

α, Cµν
n はグラスマンの変数

(µν)(n) = (−)nµµ̂(−)nν ν̂ , ξµn = Un,µψn+µ̂U
†
n,µ

具体的な話に移ります。超対称性を格子で表そうとする試みとして staggerd fermion

をもとにしたやり方を紹介します。このやり方では。はじめにこのようにゲージ場とフェ
ルミ場の作用と、それらの変換性を導入してしまいます。ここでは b, α, Cが導入された
パラメーターになっています。
通常、超対称変換を考えると、変換パラメーターは 1つだけです。
この理論では、はじめに多くのパラメーターを導入してしまって、あとから「理論が

超対称変換のもとで不変になるように」という要請を課して、多めに導入したパラメー
ターの間に成り立つ関係式を見付けようというのが筋書きです。
どのような要請をするのかというと…
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超対称性を持つ格子理論
～格子を用いた超対称Yang-Mills理論への挑戦

要請:

1.作用が超対称変換の下で不変であること
2.超対称変換の下で積分の測度 (measure)が
不変であること

⇓
導入した変数への条件:

1. →

αµn,ν = −bµ(n)

bν(n)
ανn,µ

bρ(n)C(µν)(n)
n = β

[
(−)nµαρn,µ − (−)nναρn,ν

]

bρ(n)C
(ν−ρ)
n+ρ̂ + bν(n)C

(−νρ)
n+ν̂

= −β
(
α−ρn+ρ̂,ν − α−νn+ν̂,ρ

)

2. αµn,µ = 0 ならOK.

← 1.の条件で自動的に成立。

(どのような要請をするのかというと…)この 2つです。1つ目は作用が超対称変換の下で
不変であるということ。2つ目は積分の測度が超対称変換の下で不変であるということ。
通常、理論が超対称変換の下で不変だというのはこれらを合わせたもの、つまり作用

の変化と積分測度の変化を合わせたものが、超対称変換の下で不変になればいいのです
が、それよりもやや強い条件を課しています。作用と積分測度の変化を足したものが 0

になるのではなく、作用と積分測度の変化のそれぞれが 0になるように要請するのです。
このようにすると、1番目の要請からこのような条件式が出てきて、理論がさっぱり

と書けるという利点があります。また、2番目の積分測度が超対称変換の下で不変にな
るという要請は、1番目の要請から出てくる条件式が成立しているときに必ず成立して
いるということもわかります。つまり、通常の理論が超対称不変であるという条件より
は少し強い条件を課しているのですが、それは 2つではなく実質的には「作用が超対称
変換の下で不変になれ」という条件だけということになります。
先程の作用と変換性を考えて、さらに導入したパラメーターの間に、ここに書いた条
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件式が成立しているとき、考えている理論は超対称変換の下で不変になっています。
これで、超対称変換のもとで不変である格子理論を構成したことになります。
ただ先程ははっきり述べなかったのですが、この理論の作用は 1辺が aの単位格子に

対して記述していました。つまり格子サイトは 0か 1の値しか持ちません。そこでこれ
を全空間に拡張しなくてはいけないのですが、この理論を提案している人たちは、

PSfrag replacements

のように、イチマツ模様に cellを並べていけばいいだろうと主張しています。

このように超対称性のある格子理論はいろいろと考えられているのですが、実際のと
ころ、まだ万人が納得する形で定式化されてはいません。また、本当に格子上で超対称
性が実現できているのかどうかもまだはっきりとはしていません。そういうことから、
これらはまだまだ考える余地がある分野だといえます。
以上で発表を終えたいと思います。

A.2 質疑応答
Q1.

Colemanの定理を挙げていましたが、それはあくまで連続理論でのお話で格子理論で
成立するとは限りません。その理論 (staggerd fermionをもとにした超対称な格子理論)

での要請が 2つあって「やや強い要請」と言っていましたが、そもそもその要請はかな
りキツい要請なのではないでしょうか? つまり、格子で理論を考えたときに超対称性が
本当に実現されているのでしょうか?

A1.

はい。確かに格子上で超対称性が本当に実現されているかどうかは、まだはっきりと
した答えはありません。ここで紹介したものは「格子上でも超対称性があるだろう」と
期待する立場の理論です。もちろんカイラル対称性と同じように、格子上では超対称性
は存在しないのだと考える立場もあり、その際にはカイラル対称性でいう Lüscher対称
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性のように少しでも都合のよい対称性の壊し方を考えるべきで、そういった視点での研
究もあります。時間の都合で省略しましたが、Ginsparg-Wilson関係式を超対称変換に
拡張しようとする試みはその例になっているかと思います。

Q2.

ここの理論でうまく超対称不変な理論が構成できているのは staggerd fermionの考え
方を使っているからでしょうか?

A2.

・・・・・・・・・・。Staggerd fermionの考え方だからというのもあるのでしょうが、それより
も一辺の長さが 0か 1である単位格子に限って話をしていることの方が重要なのではな
いかと思います。

(質問者)

それは違うでしょう。例えばWilson fermionを利用した理論で単位格子だけに話を限っ
ても、超対称性は実現できませんよ。

はあ…その点はやったことがないので何とも言えません21。

以降、質問なし。

A.3 使わなかったシート
用意したけど使わなかったOHPは何枚かありますが、そのうち 3枚だけ説明付きで

載せておきます。

21我ながら情けない返答ですが…ひとまずWilson fermionで単位格子に話を限っても超対称性が実現で
きないのは事実でしょう。しかし staggerd fermionの考え方を使えば、必ず超対称性が実現できるとも限
らないはずです。
ここで紹介したやり方が、他のやり方となにが違っているのかについては他のやり方を調べていなかっ

たので答えられませんでした。
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超対称性を持つ格子理論
～超対称に拡張したGinsparg-Wilson関係式

Chiral-multiplet : Φ = (φ, ψ, F )T の変換を

δεΦ = QLΦ

δεΦ̄ = Φ̄Q̄L

作用を

A(Ψ, Ψ̄) =
∑

n,m

Ψ̄nS(n,m)Ψm

として、
⇓





Ψ̄(Q̄LS+SQL)Ψ

= −Ψ̄Sα−1(αQL + Q̄Lα)α−1SΨ

δJ = strα−1(αQL + Q̄Lα)α−1S

− strα−1(αQL + Q̄Lα)

(万が一時間が余った場合として用意していたが、時間が余ることはなかったので使用
せず。この内容を詳しく書いた 2枚の補足もあり)

実数値関数のChiral-multipletを考えます。その超対称変換を格子化したものがQLを
使ってこのように書けるとします。また作用は運動項をSと表記して、このように書け
ているとします。
するとカイラル対称性に対して Ginsparg-Wilson関係式を出したのと同じやり方で計

算していくと、次に書いた 2つの関係式が得られます。このはじめに書いた方がカイラ
ル対称性でいうところのGinsparg-Wilson関係式に相当するものであり、2つ目の式は、
この変換の下での積分測度の変化に対する式です。δJは積分測度の変化によって出てく
るヤコビアンファクターで、str というのはフェルミオンの成分には−1を掛け、スカ
ラー成分には+1を掛けた上で対角成分の和をとる super-traceを表しています。
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ダブラーの何が問題か？

～ダブラーの特徴～

• 元の粒子と逆のヘリシティーを持つ

• ヘリシティー以外の量子数は同じ

～標準模型 (SU(3)× SU(2)×U(1))～

eL

eR

νeL




を、

(
e

νe

)

L

, eRという組で扱う

⇓

これを格子化すると…
(
e′

ν ′e

)

R

, e′L が現われる

(ダブラーがあるのは問題なのか? ダブラーがあってもいいのではないか? という質問
があった場合に使うつもりで用意したトランスペアレンシー)

ダブラーの特徴というのは、ここに書いてあるように「元の粒子と逆のヘリシティー
を持つこと」と、「ヘリシティー以外の量子数は元の粒子と同じであること」の 2つです。

素粒子理論での標準模型では左巻きの電子とニュートリノの組
( e
νe

)
L
でSU(2) doublet

を組み、右巻きの電子 eRで SU(2) singletとします。ところが、これを格子化して、さ
らに連続極限をとったとすると、離散化して連続極限をとっただけなので元の通りの理

論になっていて欲しいところが、元の理論には存在しなかった doublet
(e′
ν ′e

)
R
と singlet

e′L が理論に現われてしまいます。これが「標準模型を格子で表すことはできない」とい
うことであり、ダブラー問題を回避しなくてはならない理由です。
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格子上で定義された関数としてF (x)と表記
する。そのフーリエ変換を F̃ (p)として、

F̃ (p) =
∑

x

F (x)eipx

格子の並進不変性に注意すると、

F̃ (p+ µ̂π/a) =
∑

x

F (x)ei(p+
π
a µ̂)x

=
∑

~n

F (x)ei(p+
π
a µ̂)~na

=
∑

~n

F (x)ei(p~na+nµπ)

=
∑

~n

F (x)ei(p~na−nµπ)

=
∑

x

F (x)ei(p−
π
a µ̂)x

= F̃ (p− µ̂π/a)

となり、周期 2π/aを持っている。そこで運
動量空間の範囲として、

−π
a
≤ pµ ≤

π

a

を選ぶ。

(格子理論で運動量空間の積分範囲がなぜ−π/a ∼ π/aなのかを聞かれた場合用のトラ
ンスペアレンシー)

格子上で定義された関数をF (x)と表記します。これをフーリエ変換したものを考える
と、格子に並進対称性があることから運動量空間で2π/aという周期を持つことがわかりま
す。そこで、運動量の範囲として−π

a
≤ pµ ≤ π

a
というものを選んでいます。− π

4a
≤ pµ ≤ 3π

4a

という選び方をする人もいますし、選び方には任意性がありますが以下の議論では運動
量の範囲の選び方は特に関係ありません。
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